Stanford’s Geog. Estabt. Charing Cross, London.
Reprinted with additions from the Report of the Geology of Canada, by Sir W. Logan, F.R.S., 1863.
Click on map to view larger sized image.
[CHAPTER II.]
THE LAURENTIAN ROCKS.
As we descend in depth and time into the earth’s crust, after passing through nearly all the vast series of strata constituting the monuments of geological history, we at length reach the Eozoic or Laurentian rocks, deepest and oldest of all the formations known to the geologist, and more thoroughly altered or metamorphosed by heat and heated moisture than any others. These rocks, at one time known as Azoic, being supposed destitute of all remains of living things, but now more properly Eozoic, are those in which the first bright streaks of the dawn of life make their appearance.[A]
[A] Dana has recently proposed the term “Archæan,” on the ground that some of these rocks are as yet unfossiliferous but as the oldest known part of them contains fossils, there seems no need for this new name.
The name Laurentian, given originally to the Canadian development of these rocks by Sir William Logan, but now applied to them throughout the world, is derived from a range of hills lying north of the St. Lawrence valley, which the old French geographers named the Laurentides. In these hills the harder rocks of this old formation rise to considerable heights, and form the highlands separating the St. Lawrence valley from the great plain fronting on Hudson’s Bay and the Arctic Sea. At first sight it may seem strange that rocks so ancient should anywhere appear at the surface, especially on the tops of hills; but this is a necessary result of the mode of formation of our continents. The most ancient sediments deposited in the sea were those first elevated into land, and first altered and hardened by heat. Upheaved in the folding of the earth’s crust into high and rugged ridges, they have either remained uncovered with newer sediments, or have had such as were deposited on them washed away; and being of a hard and resisting nature, they have remained comparatively unworn when rocks much more modern have been swept off by denuding agencies.
But the exposure of the old Laurentian skeleton of mother earth is not confined to the Laurentide Hills, though these have given the formation its name. The same ancient rocks appear in the Adirondack mountains of New York, and in the patches which at lower levels protrude from beneath the newer formations along the American coast from Newfoundland to Maryland. The older gneisses of Norway, Sweden, and the Hebrides, of Bavaria and Bohemia, belong to the same age, and it is not unlikely that similar rocks in many other parts of the old continent will be found to be of as great antiquity. In no part of the world, however, are the Laurentian rocks more extensively distributed or better known than in North America; and to this as the grandest and most instructive development of them, and that which first afforded organic remains, we may more especially devote our attention. Their general relations to the other formations of America may be learned from the rough generalised section ([fig. 1]); in which the crumpled and contorted Laurentian strata of Canada are seen to underlie unconformably the comparatively flat Silurian beds, which are themselves among the oldest monuments of the geological history of the earth.