I was engaged in other researches, and knew that no little labour must be devoted to the work and to its publication, and that some controversy might be expected. Mr. Billings, however, with his characteristic caution and modesty, declined. His hands, he said, were full of other work, and he had not specially studied the microscopic appearances of Foraminifera or of mineral substances. It was finally arranged that I should prepare a description of the fossil, which Sir William would take to London, along with Dr. Hunt's notes, the more important specimens, and lists of the structures observed in each. Sir William was to submit the manuscript and specimens to Dr. Carpenter, and also to Prof T. Rupert Jones, in the hope that these eminent authorities would confirm our conclusions, and bring forward new facts which I might have overlooked or been ignorant of Sir William saw both gentlemen, who gave their testimony in favour of the organic and foraminiferal character of the specimens; and Dr. Carpenter in particular gave much attention to the subject, and worked out the structure of the delicate tubulation of the surfaces of the laminæ or cell-walls, which I had not distinguished previously, through a curious accident as to specimens. Mr. Lowe had been sent back to the Ottawa to explore, and just before Sir William's departure had sent in some specimens from a new locality at Petite Nation, similar in general appearance to those from Grenville, which Sir William took with him unsliced to England. These showed in a perfect manner the tubuli of the primary cell-wall, which I had in vain tried to resolve in the Grenville specimens, and which I did not see until after they had been detected by Dr. Carpenter in London. Dr. Carpenter thus contributed in a very important manner to the perfecting of the investigations begun in Canada, and on him fell the greater part of their illustration and defence,[23] in so far as Great Britain is concerned.

[23] In papers by Dr. Carpenter, subsequently referred to. Prof. Jones published an able exposition of the facts in the Popular Science Monthly.

The immediate result was a composite paper in the Proceedings of the Geological Society, by Sir W. E. Logan, Dr. Carpenter, Dr. Hunt, and myself, in which the geology, palæontology, and mineralogy of Eozoon Canadense and its containing rocks were first given to the world.[24] It cannot be wondered at that when geologists and palæontologists were thus required to believe in the existence of organic remains in rocks regarded as altogether Azoic and hopelessly barren of fossils, and to carry back the dawn of life as far before those Cambrian rocks, which were supposed to contain its first traces, as these are before the middle period of the earth's life-history, some hesitation should be felt. Further, the accurate appreciation of the evidence for such a fossil as Eozoon required an amount of knowledge of minerals, of the more humble types of animals, and of the conditions of mineralization of organic remains, possessed by few even of professional geologists. Thus Eozoon has met with some negative scepticism and positive opposition—though the latter has been smaller in amount than might have been anticipated, when we consider the novel and startling character of the facts adduced. The most annoying element in the discussion has consisted in the liability of observers, only partially informed, to confound our specimens with things of very different character, from which we had taken pains to distinguish them.

[24] In Quarterly Journal of Geological Society, vol. xxii.; Proc. Royal Society, vol. xv.; Intellectual Observer, 1865; Annals and Magazine of Natural History, 1874; and other papers and notices.

"The united thickness," says Sir William Logan, "of these three great series, the Lower and Upper Laurentian and Huronian, may possibly far surpass that of all succeeding rocks, from the base of the Palæozoic to the present time. We are thus carried back to a period so far remote that the appearance of the so-called Primordial fauna may be considered a comparatively modern event."[25] So great a revolution of thought, and this based on one fossil, of a character little recognisable by geologists generally, might well tax the faith of a class of men usually regarded as somewhat faithless and sceptical. Yet this new extension of life has been very generally received, and has found its way into text-books and popular treatises. Its opponents have been under the necessity of inventing the most strange and incredible pseudomorphoses of mineral substances to account for the facts. As might have been expected, after the publication of the original paper, other facts developed themselves. Mr. Vennor found other and scarcely altered specimens closely allied to the Laurentian forms in the Hastings series of Tudor, probably of Huronian age. Gümbel recognised the organism in Laurentian rocks in Bavaria and elsewhere in Europe, and discovered a new species in the Huronian of Bavaria.[26] Eozoon was recognised in Laurentian limestones in Massachusetts[27] and New York, and there has been a rapid growth of new facts increasing our knowledge of Foraminifera and other humble animals in the succeeding Eozoic and Palæozoic rocks. Special interest attaches to the discovery by Mr. Vennor, and by Walcott and Matthew, to be mentioned in the sequel, and tending to bridge over the interval between the Laurentian fossil and those of the Lower Cambrian. Another fact, whose significance is not to be over-estimated, is the recognition both by Dr. Carpenter and myself of specimens in which the canals are occupied by dolomite or by calcite like that of the organism itself I have made several visits to the locality at Petite Nation originally discovered by Mr. Lowe, in company with Dr. Carpenter, Dr. Bonney,[28] and other skilled observers, and have very carefully studied all the facts with reference to the mode of occurrence of the forms in the beds, and their association with layers of fragmental Eozoon, and have found that these are strictly in accordance with the theory that these old Laurentian limestones are truly marine deposits, holding the remains of the sea animals of their time.

[25] Journal Geological Society, February, 1865.

[26] Ueber das Vorkommen von Eozoon, 1866.

[27] By Mr. Bicknell at Newbury, and Mr. Burbank at Chelmsford. The latter gentleman has since maintained that the limestones at the latter place are not true beds; but his own descriptions and figures lead to the belief that this is an error of observation on his part. The Eozoon in the Chelmsford specimens and in those of Warren, New York, is in small and rare fragments in serpentinous limestone.

[28] See an excellent account of one of these visits by Dr. Bonney, Geological Magazine, 1895.

Eozoon is not, however, the only witness to the great fact of Laurentian life, of which it is the most conspicuous exponent. In many of the Laurentian limestones, mixed with innumerable fragments of Eozoon, there are other fragments with traces of organic structure of a different character. There are also casts in silicious matter which seem to indicate smaller species of Foraminifera; and large laminated forms, apparently organic, yet distinct from Eozoon. Some of these must be noticed in the following pages.