But if we do not know, and perhaps are not likely to know, any animals older than Eozoon, may we not find traces of some of its contemporaries, either in the Eozoon limestones themselves, or other rocks associated with them? Here we must admit that a deep-sea Foraminiferal limestone may give a very imperfect indication of the fauna of its time. A dredger who should have no other information as to the existing population of the world, except what he could gather from the deposits formed under several hundred fathoms of water, would necessarily have very inadequate conceptions of the matter. In like manner a geologist who should have no other information as to the animal life of the Mesozoic ages than that furnished by some of the thick beds of white chalk, might imagine that he had reached a period when the simplest kinds of protozoa predominated over all other forms of life; but this impression would at once be corrected by the examination of other deposits of the same age: so our inferences as to the life of the Laurentian from the contents of its oceanic limestones may be very imperfect, and it may yet yield other and various fossils. Its possibilities are, however, limited by the fact that before we reach this great depth in the earth's crust, we have already left behind in much newer formations all traces of animal life except a few of the lower forms of aquatic invertebrates; so that we are not surprised to find only a limited number of living things, and those of very low type. Do we then know in the Laurentian even a few distinct species, or is our view limited altogether to Eozoon Canadense? In answering this question, we must bear in mind that the Laurentian itself was of vast duration, and that important changes of life may have taken place even between the deposition of the Eozoon limestones and that of those rocks in which we find the comparatively rich fauna of the Primordial age. This subject was discussed by the writer as early as 1865, and I may repeat here what could be said in relation to it at that time:—

"In connection with these remarkable remains, it appeared desirable to ascertain, if possible, what share these or other organic structures may have had in the accumulation of the limestones of the Laurentian series. Specimens were therefore selected by Sir W. E. Logan, and slices were prepared under his direction. On microscopic examination, a number of these were found to exhibit merely a granular aggregation of crystals, occasionally with particles of graphite and other foreign minerals, or a laminated mixture of calcareous and other matters, in the manner of some more modern sedimentary limestones. Others, however, were evidently made up almost entirely of fragments of Eozoon, or of mixtures of these with other calcareous and carbonaceous fragments which afford more or less evidence of organic origin. The contents of these organic limestones may be considered under the following heads:—

1. Remains of Eozoon.

2. Other calcareous bodies, probably organic.

3. Objects imbedded in the serpentine.

4. Carbonaceous matters.

"(1) The more perfect individuals of Eozoon do not constitute the mass of any of the larger specimens in our collections; but considerable portions of some of them are made up of material of similar minute structure, destitute of lamination, and irregularly arranged. Some of this material gives the impression that there may have been organisms similar to Eozoon, but growing in an irregular or acervuline manner without lamination. Of this, however, I cannot be certain; and, on the other hand, there is distinct evidence of the aggregation of fragments of Eozoon in some of these specimens. In some they constitute the greater part of the mass. In others they are imbedded in calcareous matter of a different character, or in serpentine or granular pyroxene. In most of the specimens the cells of the fossils are more or less filled with these minerals; and in some instances it would appear that the calcareous matter of fragments of Eozoon has been in part replaced by serpentine."

[I may add here that in the limestone at Côte St. Pierre there are in some of the beds successive laminæ with grains of serpentine and others with crystals of dolomite, and that both contain fragments of Eozoon. It thus seems as if the magnesia associated with the limestone, at some stages of deposition took the form of silicate, and in others that of carbonate. I may also observe here that I have detected fragments of Eozoon in Laurentian limestone from New Brunswick, from Chelmsford in Massachusetts, from Warren County, New York, from Brazil, and from the Alps.]

"(2) Intermixed with the fragments of Eozoon above referred to are other calcareous matters apparently fragmentary. They are of various angular and rounded forms, and present several kinds of structure. The most frequent of these is a strong lamination varying in direction according to the position of the fragments, but corresponding, as far as can be ascertained, with the diagonal of the rhombohedral cleavage. This structure, though crystalline, is highly characteristic of crinoidal remains when preserved in altered limestones. The more dense parts of Eozoon, destitute of tubuli, also sometimes show this structure, though less distinctly. Other fragments are compact and structureless, or show only a fine granular appearance; and these sometimes include grains, patches, or fibres of graphite. In Cambro-Silurian limestones, fragments of corals and shells which have been partially infiltrated with bituminous matter, show a structure like this. On comparison with altered organic limestones of the Cambro-Silurian system, these appearances would indicate that, in addition to the debris of Eozoon, other calcareous structures, more like those of crinoids, corals, and shells, have contributed to the formation of the Laurentian limestones.

"(3) In the hydrous silicate (Loganite) filling the chambers of a large specimen of Eozoon from Burgess, there are numerous small pieces of foreign matter; and the silicate itself is laminated, indicating its sedimentary nature. Some of the included fragments appear to be carbonaceous, others calcareous; but no distinct organic structure can be detected in them. There are, however, in the Loganite, many minute silicious grains of a bright green colour, resembling green-sand concretions; and the manner In which these are occasionally arranged in lines and groups suggests the supposition that they may possibly be casts of the interior of minute Foraminiferal shells. They may, however, be concretionary in their origin ([Fig. 51]).