[16.] In order that the arm may be bent, some force must be used. The ulna or radius—for the two move together—must be pushed or pulled towards the humerus, or the humerus must be pushed or pulled towards the radius and ulna. How is this done in your own arm?
Take the bones of the arm; fix the top end of the humerus; tie it to something so that it cannot move. Fasten a piece of string to either the radius or ulna (it doesn’t matter which), rather near the elbow. Bore a hole through the top of the humerus and pass the string through it. Your string must be long enough to let the arm be quite straight without any strain on the string. Now, taking hold of the string where it comes out through the humerus, pull it. The fore-arm will be bent on the arm. Why? Because you have been working a lever of the third order.
The radius and ulna form the lever; its fulcrum is the end of the humerus in the elbow ([Fig. 3], F); the weight to be moved is the weight of the radius and ulna (with that of the bones of the hand if present), and this may be represented by a weight applied at about the middle of the fore-arm; the power is the pull you give the string, and that is brought to bear on your lever at the point where the string is fastened to the radius, i.e. nearer the fulcrum than the point where the weight is applied; and you know that when you have the fulcrum at one end and the power between the fulcrum and the weight, you have a lever of the third order.
Now, in order to make the thing a little more like what takes place in your own arm, instead of boring a hole through the humerus, let the string glide in a groove which you will see at the top of the humerus, and fasten the end of it to the shoulder-blade or anything you like above the humerus, and let the string be just long enough to let the arm be quite straightened out, but no longer, so that when the arm is straight the string is just about tight, or at least not loose.
Now shorten the string by pinching it up into a loop. Whenever you do this you will bend the fore-arm on the arm. Suppose you used a string which you had not to pinch up, but which, when you pleased, you could make to shorten itself. Every time it shortened itself it would pull the fore-arm up and would bend the arm—and every time it slackened again, the arm would fall back into the straight position.
In your arm there is not a string, but a body, placed very much as our string is placed, and which has the power of shortening itself when required. Every time it shortens itself it bends the arm, and when it has done shortening and lengthens again, the arm falls back into its straight position. This body which thus can shorten and lengthen itself is called a muscle.
If you put one hand on the front of your other upper arm, about half-way between your shoulder and elbow, and then bend that arm, you will feel something rising up under your hand. This is the muscle, which bends the arm, shortening, or, as we shall learn to call it, contracting.
In your own arm, as in the limb of the rabbit which you studied in your last lesson, the flesh is arranged in masses or bundles of various sizes and shapes, and each mass or bundle is called a muscle. There are several muscles in the arm, but there is in particular a large one occupying the front of the arm, called the biceps. It is a rounded mass of red flesh, considerably longer than it is broad or thick, and tapering away at either end. It is represented in [Fig. 3].
You may remember that while examining the leg of the rabbit you noticed that in many of the muscles, the soft flesh, which made up the greater part of the muscle, at one or both ends of the muscle suddenly left off, and changed into much firmer material which was white and glistening. This firmer white part you were told was called the tendon of the muscle. The rest of the muscle, generally called “the belly,” is made up of what you are accustomed to call flesh, or lean meat, but which you must now learn to speak of as muscular substance. Every muscle, in fact, consists in the first place of a mass of muscular substance. This muscular substance is made up of an immense number of soft strings or fibres, all running in one direction and done up into large and small bundles. At either end of the muscle these soft muscular fibres are joined on to firmer but thinner fibres of connective or fibrous tissue. And these thinner but firmer fibres make up the cord or band of tendon with which the muscle finishes off at either end.
It is by these tendons that the soft muscles are joined on to the hard bones, or to some of the other firm textures of the body. The tendons are sometimes round and cord-like, sometimes flat and spread out. Sometimes they are very long, sometimes very short, so as to be scarcely visible. But always you have some amount of the firmer fibres of connective tissue joining the soft muscular fibres on to the bones, and generally the tendons are not only firmer but much thinner and more slender than the belly of the muscle.