You see, by stirring, or, as it is frequently called, whipping the blood with the bundle of twigs, you have taken the fibrin out of the blood, and so prevented its clotting.
If you were to take one of the clotted lumps of blood that were spilt on the ground or a bit of the clot from a pail in which the blood had not been whipped, and wash it long enough, you would find at last that all the colour went away from the lump, and you had nothing left but a small quantity of white stringy substance. This white stringy substance is fibrin—exactly the same thing you got on your bundle of twigs.
If the blood is carefully caught in a pail, and afterwards not disturbed at all, it clots into a solid mass. The whole of the blood seems to have changed into a complete jelly; and if you turn it out of the pail, as you may do, it keeps its shape, and gives you quite a mould of the pail, a great trembling red jelly just the shape of the inside of the pail.
But if you were to leave the blood in the pail for a few hours or for a day, you would find, instead of the large jelly quite filling the pail, a smaller but firmer jelly covered by or floating in a colourless or very pale yellow liquid. This smaller, firmer jelly, which in the course of a day or so would get still firmer and smaller, would in fact go on shrinking in size, you may still call the clot; the clear fluid in which it is floating is called serum.
What has taken place is as follows. Soon after blood is shed there is formed in it a something which was not present in it before. This something, which we call fibrin, starts as a multitude of fine tender threads which run in all directions through the mass of blood, forming a close network everywhere. So the blood is shut up in an immense number of little chambers formed by the meshes of the fibrin; and it is this which makes it seem a jelly. But each thread of fibrin as soon as it is formed begins to shrink, and the blood in each of these little chambers is squeezed by the shrinking of its walls of fibrin, and tries to make its way out. The corpuscles get caught in the meshes, but all the rest of the blood passes between the threads and comes out on the top and sides of the pail. And this goes on until you have left in the clot very little besides corpuscles entangled in a network of fibrin, and all the rest of the blood has been squeezed outside the clot, and is then called serum. Serum, then, is blood out of which the corpuscles have been strained by the process of clotting.
Now I dare say you are ready to ask the question, If blood clots so readily when it is shed, why does it not clot inside the body? Why is our blood ever fluid? This is rather a difficult question to answer. When blood is shed from the warm body it soon gets cool. But it does not clot and become solid because it gets cool, as ordinary jelly does. If you keep it from getting cool it clots all the same, in fact quicker, and if kept cold enough will not clot at all. Nor does it clot when shed, because it has become still, and is no longer rushing round through the blood-vessels. Nor is it because it is exposed to the air. Perhaps we don’t know exactly why it is, and you will have much to learn hereafter about the coagulation of blood. All I will say at present is that as long as the blood is in the body there is something at work to keep it from clotting. It does clot sometimes in the body, and blood-vessels get plugged with the clots; but that constitutes a very dangerous disease.
[24.] Well, blood is thicker than water because it contains solid corpuscles and fibrin. But even the serum, i.e. blood out of which both fibrin and corpuscles have been taken, is thicker than water.
You know that if you were to take a basinful of pure water and boil it, it would boil away to nothing. It would all go off in steam. But if you were to try to boil a basinful of serum, you would find several curious things happen.
In the first place you would not be able to boil it at all. Before you got it as hot as boiling water, your serum, which before seemed quite as liquid as water, only feeling a little sticky if you put your finger in it, would all become quite solid. You know the difference between a raw and a boiled egg. The white of the raw egg, though very sticky and ropy, or viscid as it is called, is still liquid; you will find it hard work if you try to cut it with a knife. The white of the hard boiled egg, on the other hand, is quite solid, and you can cut it into ever so thin slices. It has been “set” by boiling. Well, the serum of blood is in this respect very like white of egg. In fact they both contain the same substance, called albumin, which has this property of “setting” or becoming solid when heated nearly to boiling-point. Both the serum of blood and white of egg even when “set” are wet, i.e. contain a great deal of water. You may dry them in the proper manner into a transparent horny substance. When quite dry they will readily burn. They are therefore things which can be oxidized. When burnt they give off carbonic acid, water, and ammonia; the latter you might easily recognize by its effect on your nose if you were to burn a piece of dried blood in a flame. Now, when I say that albumin in burning gives off carbonic acid, water, and ammonia, you know from your Chemistry that it must contain carbon to form the carbonic acid, hydrogen to form water, and nitrogen to form ammonia. It need not contain oxygen, for as you know it could get all the oxygen it wanted from the air; still it does contain some oxygen. Albumin, then, is an oxidizable or combustible body made up of nitrogen, carbon, hydrogen, and oxygen. It is important you should remember this; but I will not bother you with how much of each—it is a very complex substance, built up in a wonderful way, far more complex than any of the things you had to learn about in your Chemistry Primer. And this albumin, dissolved in a great deal of water, forms the serum of blood.
I did not say anything about what fibrin was made of; but it, like albumin, is made up of nitrogen, carbon, hydrogen, and oxygen. It is not quite the same thing as albumin, but first cousin to it. There is another first cousin to both of them, also containing nitrogen, carbon, hydrogen, and oxygen, which together with a great deal of water forms muscle; another forms a great part of the red corpuscles; and scattered all over the body in various places, there are first cousins to albumin, all containing nitrogen, carbon, hydrogen, and oxygen, all combustible, and all when burnt giving off carbonic acid, water, and ammonia. All these first cousins go under one name; they are all called proteids.