Local Exhaust Ventilation.

—In considering preventive measures against lead poisoning, precedence must be given to removal of fumes and dust by locally-applied exhaust ventilation, as, unfortunately, the wearing of a respirator is neither in itself a sufficient protection, nor, if it were, could the constant wearing of one be enforced. A respirator is of no use against lead fume. In the case of dust, the conditions which it must fulfil to be effective are, first, that the air breathed is freed from dust, and, secondly, that it should not incommode the wearer. Further, it should be simple in construction, easily applied, and allow of frequent renewal of the filtering medium. No existing respirator of moderate price conforms quite satisfactorily with these requirements. The more closely to the face it is made to fit, and the more effectually the air is filtered, the greater is the inconvenience experienced when it is worn. This inconvenience is due to the exertion (showing itself in increase of the respiratory movements and pulse-rate) caused in aspirating the air through the filtering medium, and rebreathing some portion of the expired breath, containing a much greater proportion of carbonic acid gas and of moisture at a higher temperature than are present in fresh air. Respirators, therefore, except for work lasting a short time—half an hour to an hour—cannot be considered an effective or sufficient means of protecting the worker against dust. If a respirator must be worn, the simplest form is a pad of ordinary non-absorbent cotton-wool (absorbent wool quickly becomes sodden and impervious), about 3 inches by 4 inches, placed over the mouth and nostrils, and kept in position by elastic bands passed round the ears. The pad should be burnt after use.

With a smooth, impervious floor, however, and ventilation designed to remove the fumes and dust at, or as near as possible to, the point of origin, lead poisoning would become very rare in most of the industries to be described. The essential points of such a system are—(1) The draught or current of air set in motion either by heat or by a fan; (2) the ducts along which the current travels; (3) the hoods or air-guides designed to intercept and catch the fumes and dust at the point of generation; (4) inlets from the outside air into the room to replace continuously the air extracted, and, in many cases, (5) a suitable dust filter or collector.

Exhaust by Heat.

—Processes giving rise to fumes or to dust liberated on stirring or skimming, which can be dealt with by the draught created in the furnace flue or over a bath of molten metal provided with adequate hood and duct up which the heated air travels, are—Smelting, refining, spelter manufacture, and the numerous operations necessitating the melting of lead, such as tinning with a mixture of tin and lead, sheet lead and lead piping, stereo pots in letterpress printing, pattern-making, tempering springs, file-hardening, etc. The dusting of red-hot metallic surfaces, as in vitreous enamelling, might possibly also be dealt with in the same way. The disadvantage of the exhaust by heat is the uncertainty and inequality of the draught, and the size of the duct necessary to cope with the volume of rarefied air from above the molten vessel.

The closer the hood is brought down over the point where the fumes escape, the less risk is there of cross-currents deflecting them into the workroom. Hence all baths of molten metal should have the sides and back closed in, leaving as small a space open in front as is practicable in view of necessary skimming or other operations.

In the case of tinning baths, Duckering[4] describes completely successful results when from the top of the hood a shaft at least 24 inches in diameter was carried vertically upwards into the open air to a height of 18 feet, and the top of the shaft fitted with a wind screen in the form of a very large cone, having its lower edge below the upper edge of the shaft, and its nearest point at least 8 inches from the top of the shaft. Smoke produced in large quantity at any point 6 inches outside the front of the hood was entirely drawn into it. As, however, the inrush of air caused an eddy of the fumes at the upper edge of the opening, the edges of the hood were turned inwards, so that the operation of wiping was done in a sort of short tunnel. In general, it may be said that the diameter of pipes leading from hoods to the outer air (on the efficacy of the draught in which success depends) is much too small. Frequently mere increase in size will convert an indifferent draught into a good one. The height of the hood also—i.e., the distance between its lower border and the point where it joints the duct—is of importance. The shorter this distance is, the less serviceable does it become for the removal of fume. Indeed, it may even retain the fume which, were the hood not present, would rise to the roof. Sometimes safety is increased by making the hood double, leaving a space between the two sheets, and so concentrating the draught at the centre and at the margin. With a fan, ducts of less diameter can be used than when dependence is placed on heat alone. A duct carried into a chimney-stack has the advantage of dispersing the fume at a safe distance from the workroom.

The variableness of the draught produced by heat makes it unsuitable for removal of dust, except such as arises from skimming. The receptacle for the skimmings should always be kept inside the canopy of the hood. We have, however, seen the dust given off in the heading of yarn dyed with chromate of lead successfully carried away under hoods connected up by branch ducts with the main chimney-stack.

Fig. 1.—Davidson’s Sirocco Propeller Fan.