"Sensibly changed!" but not formed into "new species." Mr. Darwin, of course, could not mean that species generally change so rapidly, which would be strangely at variance with the abundant evidence we have of the stability of animal forms as represented on Egyptian monuments and as shown by recent deposits. Indeed, he goes on to say,—"Species, however, probably change much more slowly, and within the same country only a few change at the same time. This slowness follows from all the inhabitants of the same country being already so well adapted to each other, that places in the polity of nature do not occur until after long intervals, when changes of some kind in the physical conditions, or through immigration, have occurred, and individual differences and variations of the right nature, by which some of the inhabitants might be better fitted to their new places under altered circumstances, might not at once occur." This is true, and not only will these changes occur at distant intervals, but it must be borne in mind that in tracing back an animal to a remote ancestry, we pass through modifications of such rapidly increasing number and importance that a geometrical progression can alone indicate the increase of periods

which such profound alterations would require for their evolution through "Natural Selection" only.

Thus let us take for an example the proboscis monkey of Borneo (Semnopithecus nasalis). According to Mr. Darwin's own opinion, this form might have been "sensibly changed" in the course of two or three centuries. According to this, to evolve it as a true and perfect species one thousand years would be a very moderate period. Let ten thousand years be taken to represent approximately the period of substantially constant conditions during which no considerable change would be brought about. Now, if one thousand years may represent the period required for the evolution of the species S. nasalis, and of the other species of the genus Semnopithecus; ten times that period should, I think, be allowed for the differentiation of that genus, the African Cercopithecus and the other genera of the family Simiidæ—the differences between the genera being certainly more than tenfold greater than those between the species of the same genus. Again we may perhaps interpose a period of ten thousand years' comparative repose.

For the differentiation of the families Simiidæ and Cebidæ—so very much more distinct and different than any two genera of either family—a period ten times greater should, I believe, be allowed than that required for the evolution of the subordinate groups. A similarly increasing ratio should be granted for the successive developments of the difference between the Lemuroid and the higher forms of primates; for those between the original primate and other root-forms of placental mammals; for those between primary placental and implacental mammals, and perhaps also for the divergence of the most ancient stock of these and of the monotremes, for in all these cases modifications of structure appear to increase in complexity in at least that ratio. Finally, a vast period must be granted for the development of the lowest mammalian type from the primitive stock of the whole vertebrate sub-kingdom. Supposing this primitive stock

to have arisen directly from a very lowly organized animal indeed (such as a nematoid worm, or an ascidian, or a jelly-fish), yet it is not easy to believe that less than two thousand million years would be required for the totality of animal development by no other means than minute, fortuitous, occasional, and intermitting variations in all conceivable directions. If this be even an approximation to the truth, then there seem to be strong reasons for believing that geological time is not sufficient for such a process.

The second question is, whether there has been time enough for the deposition of the strata which must have been deposited, if all organic forms have been evolved according to the Darwinian theory?

Now this may at first seem a question for geologists only, but, in fact, in this matter geology must in some respects rather take its time from zoology than the reverse; for if Mr. Darwin's theory be true, past time down to the deposition of the Upper Silurian strata can have been but a very small fraction of that during which strata have been deposited. For when those Upper Silurian strata were formed, organic evolution had already run a great part of its course, perhaps the longest, slowest, and most difficult part of that course.

At that ancient epoch not only were the vertebrate, molluscous, and arthropod types distinctly and clearly differentiated, but highly developed forms had been produced in each of these sub-kingdoms. Thus in the Vertebrata there were fishes not belonging to the lowest but to the very highest groups which are known to have ever been developed, namely, the Elasmobranchs (the highly organized sharks and rays) and the Ganoids, a group now poorly represented, but for which the sturgeon may stand as a type, and which in many important respects more nearly resemble higher Vertebrata than do the ordinary or osseous fishes. Fishes in which the ventral fins are placed in front of the pectoral ones (i.e. jugular fishes) have been generally considered to be comparatively modern forms. But Professor

Huxley has kindly informed me that he has discovered a jugular fish in the Permian deposits.

Amongst the molluscous animals we have members of the very highest known class, namely, the Cephalopods, or cuttle-fish class; and amongst articulated animals we find Trilobites and Eurypterida, which do not belong to any incipient worm-like group, but are distinctly differentiated Crustacea of no low form.