The Wholly Conjunctive Syllogism.

§ 736. Wholly conjunctive syllogisms do not differ essentially from simple ones, to which they are immediately reducible. They admit of being constructed in every mood and figure, and the moods of the imperfect figures may be brought into the first by following the ordinary rules of reduction. For instance—

Cesare. Celarent.

If A is B, C is never D. \ / If C is D, A is never B.
If E is F, C is always D. | = | If E is F, C is always D.
.'. If E is F, A is never B. / \ .'. If E is F, A is never B.

If it is day, the stars never shine.\ /If the stars shine, it is never day.
If it is night, the stars always \=/ If it is night, the stars always
shine. / \ shine.
.'. If it is night, it is never day / \.'. If it is night, it is never day.

Disamis. Darii.
If C is D, A is sometimes B. \ / If C is D, E is always F.
If C is D, E is always F. | = | If A is B, C is sometimes D.
If E is F, A is sometimes B. / \ .'. If A is B, E is sometimes F.
.'. If E is F, A is sometimes B.

If she goes, I sometimes go. \ / If she goes, he always goes,
If she goes, he always goes. | = | If I go, she sometimes goes.
.'. If he goes, I sometimes go. / \ .'. If I go, he sometimes goes.
.'. If he goes, I sometimes go.

The Partly Conjunctive Syllogism.

§ 737. It is this kind which is usually meant when the Conjunctive or Hypothetical Syllogism is spoken of.

§ 738. Of the two premisses, one conjunctive and one simple, the conjunctive is considered to be the major, and the simple premiss the minor. For the conjunctive premiss lays down a certain relation to hold between two propositions as a matter of theory, which is applied in the minor to a matter of fact.