| Average Strength. | Cases. | Deaths. | Percentage of Cases. | Percentage of Deaths. | |
|---|---|---|---|---|---|
| Uninoculated | 298 | 30(-1?) | 4 | 10.1 | 1.3 |
| Inoculated | 339 | 5(+1?) | 1 | 1.3 | 0.3 |
"It may be noted," he says, "that the result is in conformity with that of all the statistical returns of anti-typhoid inoculation which have reached me."
11. Deelfontein. The Lancet, 18th January 1902, contains a paper by Dr. Washbourn and Dr. Andrew Elliot, on 262 cases of typhoid fever in the Imperial Yeomanry Hospital at Deelfontein during the year March 1900 to March 1901. (See Dr. Washbourn's earlier letter, Brit. Med. Jour., 16th June 1900.) They say: "In 211 of our cases, it was definitely recorded whether the patient had been inoculated or not: 186 of these cases had not been inoculated, with 20 deaths, or a mortality of 10.7 per cent.; 25 had been inoculated, with 4 deaths, or a mortality of 16 per cent. The mortality was thus higher among the inoculated than among the non-inoculated." Of the personnel of the hospital, there were 59 inoculated, with 4 cases, and 25 not inoculated, with 4 cases.
12. Winburg. The Lancet, 5th April 1902, contains a short note by Professor Wright, on the 5th Battalion, Manchester Regiment. He says: "In view of the dearth of statistics bearing on the incidence of typhoid fever in South Africa in inoculated and uninoculated persons respectively, the following, for which I am indebted to Lieutenant J. W. West, R.A.M.C., Winburg, Orange River Colony, may not be entirely without interest. The statistics here in question give the results obtained in the case of the 5th Battalion, Manchester Regiment, for the six months which have elapsed since their landing in South Africa. The figures, which relate to a total strength of 747 men and officers under observation, are as follows:—
| Number. | Cases. | Deaths. | Percentage of Cases. | Percentage of Deaths. | |
|---|---|---|---|---|---|
| Uninoculated | 547 | 23 | 7 | 4.2 | 1 in 3.3 |
| Inoculated | 200 | 3 | 0 | 1.5 | 0 |
"The three attacks in the inoculated are reported to have been of exceptionally mild type, contrasting in a striking manner with the severe attacks which occurred in the uninoculated. At the time of sending in the report, some of the uninoculated patients were 'not yet out of danger.'"
Certainly, these instances show a good balance of lives saved, not only under the adverse conditions of the war, but also in Egypt, India, and the United Kingdom. But the bacteriological work on typhoid fever has been directed also to the working out of a very different problem: and that is the method of diagnosis which is called "Widal's reaction." The practical uses of this reaction are of the utmost importance. It is the outcome of work in different parts of the world—by Wright and Semple and Durham in England, Chantemesse and Widal in France, Pfeiffer and Kolle and Grüber in Germany, and many more. The first systematic study of it was made by Durham and Pfeiffer; and Widal's name is especially associated with the application of their work to the uses of practice. Admirable accounts of the whole subject are given by Dr. Cabot in his book, The Serum-Diagnosis of Disease (Longmans, 1899), and by Mr. Foulerton in the Middlesex Hospital Journal, October 1899 and July 1901.
Widal's reaction is surely one of the fairy tales of science. The bacteriologist works not with anything so gross as a drop of blood, but with a drop of blood fifty or more times diluted; one drop of this dilution is enough for his purpose. Take, for instance, an obscure case suspected to be typhoid fever: a drop of blood taken from the finger is diluted fifty or more times, that the perfect delicacy of the test may be ensured; a drop of this dilution is mixed with a drop of nutrient fluid containing living typhoid bacilli, and a drop of this mixture of blood and bacilli is watched under the microscope:—
"The motility of the bacilli is instantaneously or very quickly arrested, and in a few minutes the bacilli begin to aggregate together into clumps, and by the end of the half-hour there will be very few isolated bacilli visible. In less marked cases, the motility of the bacilli does not cease for some minutes; while in the least marked ones the motility of the bacilli may never be completely arrested, but they are always more or less sluggish, while clumping ought to be quite distinct by the end of the half-hour."