How long available soil water will sustain a crop is determined by how many plants are drawing on the reserve, how extensively their root systems develop, and how many leaves are transpiring the moisture. If there are no plants, most of the water will stay unused in the barren soil through the entire growing season. If a crop canopy is established midway through the growing season, the rate of water loss will approximate that listed in the table in Chapter 1 "Estimated Irrigation Requirement." If by very close planting the crop canopy is established as early as possible and maintained by successive interplantings, as is recommended by most advocates of raised-bed gardening, water losses will greatly exceed this rate.

Many vegetable species become mildly stressed when soil moisture has dropped about half the way from capacity to the wilting point. On very closely planted beds a crop can get in serious trouble without irrigation in a matter of days. But if that same crop were planted less densely, it might grow a few weeks without irrigation. And if that crop were planted even farther apart so that no crop canopy ever developed and a considerable amount of bare, dry earth were showing, this apparent waste of growing space would result in an even slower rate of soil moisture depletion. On deep, open soil the crop might yield a respectable amount without needing any irrigation at all.

West of the Cascades we expect a rainless summer; the surprise comes that rare rainy year when the soil stays moist and we gather bucketfuls of chanterelle mushrooms in early October. Though the majority of maritime Northwest gardeners do not enjoy deep, open, moisture-retentive soils, all except those with the shallowest soil can increase their use of the free moisture nature provides and lengthen the time between irrigations. The next chapter discusses making the most of whatever soil depth you have. Most of our region's gardens can yield abundantly without any rain at all if only we reduce competition for available soil moisture, judiciously fertigate some vegetable species, and practice a few other water-wise tricks.

Would lowering plant density as much as this book suggests equally lower the yield of the plot? Surprisingly, the amount harvested does not drop proportionately. In most cases having a plant density one-eighth of that recommended by intensive gardening advocates will result in a yield about half as great as on closely planted raised beds.

Internet Readers: In the print copy of this book are color pictures of my own "irrigationless" garden. Looking at them about here in the book would add reality to these ideas.

Chapter 3

Helping Plants to Need Less Irrigation

Dry though the maritime Northwest summer is, we enter the growing season with our full depth of soil at field capacity. Except on clayey soils in extraordinarily frosty, high-elevation locations, we usually can till and plant before the soil has had a chance to lose much moisture.

There are a number of things we can do to make soil moisture more available to our summer vegetables. The most obvious step is thorough weeding. Next, we can keep the surface fluffed up with a rotary tiller or hoe during April and May, to break its capillary connection with deeper soil and accelerate the formation of a dry dust mulch. Usually, weeding forces us to do this anyway. Also, if it should rain during summer, we can hoe or rotary till a day or two later and again help a new dust mulch to develop.