Summarized in one paragraph, Albrecht showed that within a single species or variety, plant protein levels vary 25 percent or more depending on soil fertility, while a plant's content of vital nutrients like calcium, magnesium, and phosphorus can simultaneously move up or down as much as 300 percent, usually corresponding to similar changes in its protein level. Albrecht also discovered how to manage soil in order to produce highly nutritious food. Chapter Eight has a lot more praise for Dr. Albrecht. There I explore this interesting aspect of gardening in more detail because how we make and use organic matter has a great deal to do with the resulting nutritional quality of the food we grow.
Imagine trying to make compost from deficient materials such as a heap of pure, moist sawdust. What happens? Very little and very, very slowly. Trees locate most of their nutrient accumulation in their leaves to make protein for photosynthesis. A small amount goes into making bark. Wood itself is virtually pure cellulose, derived from air and water. If, when we farmed trees, we removed only the wood and left the leaves and bark on the site, we would be removing next to nothing from the soil. If the sawdust comes from a lumber mill, as opposed to a cabinet shop, it may also contain some bark and consequently small amounts of other essential nutrients.
Thoroughly moistened and heaped up, a sawdust pile would not heat up, only a few primary decomposers would take up residence. A person could wait five years for compost to form from pure moist sawdust and still not much would happen. Perhaps that's why the words "compost" and "compot" as the British mean it, are connected. In England, a compot is a slightly fermented mixture of many things like fruits. If we mixed the sawdust with other materials having a very low C/N, then it would decompose, along with the other items.
CHAPTER THREE
Practical Compost Making
To make compost rot rapidly you need to achieve a strong and lasting rise in temperature. Cold piles will eventually decompose and humus will eventually form but, without heat, the process can take a long, long time. Getting a pile to heat up promptly and stay hot requires the right mixture of materials and a sensible handling of the pile's air and moisture supply.
Compost piles come with some built-in obstacles. The intense heat and biological activity make a heap slump into an airless mass, yet if composting is to continue the pile must allow its living inhabitants sufficient air to breath. Hot piles tend to dry out rapidly, but must be kept moist or they stop working. But heat is desirable and watering cools a pile down. If understood and managed, these difficulties are really quite minor.
Composting is usually an inoffensive activity, but if done incorrectly there can be problems with odor and flies. This chapter will show you how to make nuisance-free compost.
Hot Composting
The main difference between composting in heaps and natural decomposition on the earth's surface is temperature. On the forest floor, leaves leisurely decay and the primary agents of decomposition are soil animals. Bacteria and other microorganisms are secondary. In a compost pile the opposite occurs: we substitute a violent fermentation by microorganisms such as bacteria and fungi. Soil animals are secondary and come into play only after the microbes have had their hour.