The temperature of the planet Venus would be about 65° Cent. (149° F.) if its atmosphere were perfectly transparent. We know, however, that dense clouds, probably of water drops, are floating in the atmosphere of this planet, preventing us from seeing its land and water surfaces. According to the determinations made by Zöllner and others, Venus would reflect not less than 76 per cent. of the incident light of the sun, and the planet would thus be as white as a snow-ball. The rays of heat are not reflected to the same extent. We may estimate that the portion of heat absorbed by the planet is about half the incident heat. The temperature of Venus will therefore be reduced considerably, but it is partly augmented again by the protective action of this atmosphere. The mean temperature of Venus may, hence, not differ much from the calculated temperature, and may amount to about 40° (104° F.). Under these circumstances the assumption would appear plausible that a very considerable portion of the surface of Venus, and particularly the districts about the poles, would be favorable to organic life.

Passing to the earth, we find that the temperature-reducing influence of the clouds must be strong. They protect about half of the earth’s surface (52 per cent.) from solar radiation. But even with a perfectly clear sky, not all the light from the sun really reaches the earth’s surface; for finely distributed dust is floating even in the purest air. I have estimated that this dust would probably absorb 17 per cent. of the solar heat. Clouds and dust would therefore together deprive the earth of 34 per cent. of the heat sent to it, which would lead to a reduction of the temperature by about 28°. Dust and the water-bubbles in the clouds also prevent the radiation of heat from the earth, so that the total loss of heat to be charged to clouds and dust will amount to about 20° (36° F.).

It has now been ascertained that the mean temperature of the earth is 16° (61° F.), instead of the calculated 6.5° (43.7° F.). Deducting the 20° due to the influence of dust and clouds, we obtain -14° (7° F.), and the observed temperature would therefore be higher than the calculated by no less than 30° (54° F.). The discrepancy is explained by the heat-protecting action of the gases contained in the atmosphere, to which we shall presently refer (page 51).

There are but few clouds on Mars. This planet is endowed with an atmosphere of extreme transparency, and should therefore have a high temperature. Instead of the temperature of -37° (35° F.), calculated, the mean temperature seems to be +10° (+50° F.). During the winter large white masses, evidently snow, collect on the poles of Mars, which rapidly melt away in spring and change into water that appears dark to us. Sometimes the snow-caps on the poles of Mars disappear entirely during the Mars summer; this never happens on our terrestrial poles. The mean temperature of Mars must therefore be above zero, probably about +10°. Organic life may very probably thrive, therefore, on Mars. It is, however, rather sanguine to jump at the conclusion that the so-called canals of Mars prove its being inhabited by intelligent beings. Many people regard the "canals" as optical illusions; Lowell’s photographs, however, do not justify this opinion.

As regards the other large planets, the temperatures which we have calculated for them are very low. This calculation is, however, rather illusory, because these planets probably do not possess any solid or liquid surface, but consist altogether of gases. Their densities, at least, point in this direction. In the case of the inner planets, Mars and our moon included, the density is rather less than that of the earth. Mercury stands last among them, with its specific gravity of 0.564. There follows a great drop in the specific gravities of the outer large planets. Saturn, with a density of 0.116, is last in this order; the densities of the two outermost planets lie somewhat higher—by 0.3 or 0.4 about—but these last data are very uncertain. Yet these figures are of the same order of magnitude as that assumed for the sun—0.25—and we believe that the sun, apart from the small clouds, is wholly a gaseous body. It is therefore probable that the outer planets, including Jupiter, will also be gaseous and be surrounded by dense veils of clouds which prevent our looking down into their interior. That view would contend against the idea that these planets can harbor any living beings. We could rather imagine their moons to be inhabited. If these moons received no heat from their planets, they would assume the above-stated temperatures of their central bodies. Looked at from our moon, the earth appears under a visual angle, 3.7 times as large as that of the sun. As the temperature of the sun has, from its radiation, been estimated at 6200° Cent., or 6500° absolute, the moon would receive as much heat from the earth as from the sun, if the earth had a temperature of about 3100° Cent., or 3380° absolute. When the first clouds of water vapor were being formed in the terrestrial atmosphere, the earth’s temperature was about 360°, and the radiation from the earth to the moon only about 1.25-thousandth of that of the sun. The present radiation from the earth does not even attain one-twentieth of this value. It is thus manifest that the radiation from the earth does not play any part in the thermal household of the moon.

The relations would be quite different if the earth had the 11.6 times greater diameter of Jupiter, or the diameter of Saturn, which is 9.3 times greater than its own. The radiation from the earth to the moon would then make up about a sixth or a ninth of the actual solar radiation, taking the temperature of the earth’s surface at 360°. We can easily calculate, further, that Jupiter and Saturn would radiate as much heat against a moon at a distance of 240,000 or 191,000 km. respectively (since the distance of the moon from the earth amounts to 384,000 km.) as the sun sends to Mars—taking the temperature of those planets at 360° Cent. Now we find, near Jupiter as well as near Saturn, moons at the distances of 126,000 and 186,000 km. respectively, which are smaller than those mentioned, and it is not inconceivable that these moons receive from their central bodies sufficient heat to render life possible, provided that they be enveloped by a heat-absorbing atmosphere. The conditions appear to be less favorable for the innermost satellites of Jupiter and Saturn. When their planets are shining at the maximum brilliancy, their light intensity is only a sixth or a ninth of the solar light intensity, which upon these satellites is itself only one-twenty-seventh or one-ninetieth of the intensity on the earth. During the incandescence epoch of these planets their moons will certainly for some time have been suitable for the development of life.

That the atmospheric envelopes limit the heat losses from the planets had been suggested about 1800 by the great French physicist Fourier. His ideas were further developed afterwards by Pouillet and Tyndall. Their theory has been styled the hot-house theory, because they thought that the atmosphere acted after the manner of the glass panes of hot-houses. Glass possesses the property of being transparent to heat rays of small wave lengths belonging to the visible spectrum; but it is not transparent to dark heat rays, such, for instance, as are sent out by a heated furnace or by a hot lump of earth. The heat rays of the sun now are to a large extent of the visible, bright kind. They penetrate through the glass of the hot-house and heat the earth under the glass. The radiation from the earth, on the other hand, is dark and cannot pass back through the glass, which thus stops any losses of heat, just as an overcoat protects the body against too strong a loss of heat by radiation. Langley made an experiment with a box, which he packed with cotton-wool to reduce loss by radiation, and which he provided, on the side turned towards the sun, with a double glass pane. He observed that the temperature rose to 113° (235° F.), while the thermometer only marked 14° or 15° (57° or 59° F.) in the shade. This experiment was conducted on Pike’s Peak, in Colorado, at an altitude of 4200 m. (13,800 ft.), on September 9, 1881, at 1 hr. 4 min. P.M., and therefore at a particularly intense solar radiation.

Fourier and Pouillet now thought that the atmosphere of our earth should be endowed with properties resembling those of glass, as regards permeability of heat. Tyndall later proved this assumption to be correct. The chief invisible constituents of the air which participate in this effect are water vapor, which is always found in a certain quantity in the air, and carbonic acid, also ozone and hydrocarbons. These latter occur in such small quantities that no allowance has been made for them so far in the calculations. Of late, however, we have been supplied with very careful observations on the permeability to heat of carbonic acid and of water vapor. With the help of these data I have calculated that if the atmosphere were deprived of all its carbonic acid—of which it contains only 0.03 per cent. by volume—the temperature of the earth’s surface would fall by about 21°. This lowering of the temperature would diminish the amount of water vapor in the atmosphere, and would cause a further almost equally strong fall of temperature. The examples, so far as they go, demonstrate that comparatively unimportant variations in the composition of the air have a very great influence. If the quantity of carbonic acid in the air should sink to one-half its present percentage, the temperature would fall by about 4°; a diminution to one-quarter would reduce the temperature by 8°. On the other hand, any doubling of the percentage of carbon dioxide in the air would raise the temperature of the earth’s surface by 4°; and if the carbon dioxide were increased fourfold, the temperature would rise by 8°. Further, a diminution of the carbonic acid percentage would accentuate the temperature differences between the different portions of the earth, while an increase in this percentage would tend to equalize the temperature.

The question, however, is whether any such temperature fluctuations have really been observed on the surface of the earth. The geologists would answer: yes. Our historical era was preceded by a period in which the mean temperature was by 2° (3.6 F.) higher than at present. We recognize this from the former distribution of the ordinary hazel-nut and of the water-nut (Trapa natans). Fossil nuts of these two species have been found in localities where the plants could not thrive in the present climate. This age, again, was preceded by an age which, we are pretty certain, drove the inhabitants of northern Europe from their old abodes. The glacial age must have been divided into several periods, alternating with intervals of milder climates, the so-called inter-glacial periods. The space of time which is characterized by these glacial periods, when the temperature—according to measurements based upon the study of the spreading of glaciers in the Alps—must have been about 5° (8° F.) lower than now, has been estimated by geologists at not less than 100,000 years. This epoch was preceded by a warmer age, in which the temperature, to judge from fossilized plants of those days, must at times have been by 8° or 9° (14° or 16° F.) higher than at present, and, moreover, much more uniformly distributed over the whole earth (Eocene). Pronounced fluctuations of this kind in the climate have also occurred in former geological periods.

Are we now justified in supposing that the percentage of carbon dioxide in the air has varied to an extent sufficient to account for the temperature changes? This question has been answered in the affirmative by Högbom, and, in later times, by Stevenson. The actual percentage of carbonic acid in the air is so insignificant that the annual combustion of coal, which has now (1904) risen to about 900 million tons and is rapidly increasing,[3] carries about one-seven-hundredth part of its percentage of carbon dioxide to the atmosphere. Although the sea, by absorbing carbonic acid, acts as a regulator of huge capacity, which takes up about five-sixths of the produced carbonic acid, we yet recognize that the slight percentage of carbonic acid in the atmosphere may by the advances of industry be changed to a noticeable degree in the course of a few centuries. That would imply that there is no real stability in the percentage of carbon dioxide in the air, which is probably subject to considerable fluctuations in the course of time.