Fig. 18.—Sun-spot group and granulation of the sun. (Photographed at the Meudon Observatory, near Paris, April 1, 1884)
The faculæ are formed by very large accumulations of clouds which are carried up by strong ascending currents and spread over large areas, as in our cyclones. The spots correspond to descending masses of gas with rising temperatures, which are therefore "dry" and do not carry any clouds, as in terrestrial anticyclones. Through these holes in the walls of solar clouds we peep a little farther into the gigantic masses of gas, and we obtain an idea of the state of affairs in the deeper strata of the sun. The depth of the wall of cloud is, of course, not large compared to the radius of the sun.
Fig. 19.—Part of the solar spectrum of January 3, 1872. After Langley. The bright horizontal bands are due to prominences. In the middle (at 208) the hydrogen line F, strongly distorted by violent agitation
The study of the spectra affords us the best insight into the nature of the different parts of the sun. The spectra teach us not only the constituents of these parts, but also the velocities with which they move. We have learned in this way that, lying above the luminous clouds of the sun which are radiating to us, there are great masses of gas containing most of our terrestrial elements. We distinguish particularly in them iron, magnesium, calcium, sodium, helium, and hydrogen. The two last-mentioned constituents, being the least dense, are found particularly in the outermost strata of the atmosphere. The solar atmosphere becomes visible when, during an eclipse of the sun, the disk of the moon has proceeded so far as to cover the intensely luminous clouds in the so-called photosphere. Owing to its strong percentage of hydrogen, the gaseous atmosphere generally shines in the purple hue which is characteristic of this element. This stratum of gas is also called the chromosphere (from the Greek word χρῶμα, meaning color). Its thickness is estimated at from 7000 to 9000 km. (5000 to 6000 miles). From it rise rays of fire over the surrounding surface like blades of grass on meadows, to which their appearance has been likened.
Fig. 20.—Metallic prominences in vortex motion. The white spot marks the size of the earth
Fig. 21.—Fountain-like metallic prominences
When these flames rise still higher, to about 15,000 km. (9300 miles) or more, they are called protuberances or prominences. Their number as well as their altitude grow with the number of sun-spots. They are distinguished as metallic and as quiet prominences. The former are characterized by particularly violent motion, as will become apparent from Figs. 20 and 21, and they contain large amounts of metallic vapor. They appear only within the belt of sun-spots which are most pronounced at a distance of about 20° from the solar equator. Their movements are so violent that they often traverse several hundreds of kilometres in a second. The Hungarian Fényi observed, indeed, on July 15, 1895, a prominence whose greatest velocity in the line of sight, measured spectroscopically, amounted to 862 km. (536 miles), and whose maximum velocity at right angles to this direction was 840 km. per second. These colossal velocities distinguish the highest parts, while the lower portions, which are the most dense and which contain most metallic vapor, are less mobile, as might be expected. Their altitude above the sun’s surface may reach exceedingly high figures, and this applies also to the quiet prominences. The above-mentioned prominence of July 15, 1895, reached a height of 500,000 km., and Langley observed, on October 7, 1880, one at an altitude of 560,000 km., whose tip, therefore, nearly attained an elevation equal to that of a radius of the sun, 690,000 km. above the limb of the sun’s photosphere. The mean altitude of these prominences is 40,000 km. After their discovery by Lector Vassenius, of Götheborg, in 1733, they could only be studied during total solar eclipses, until Lockyer and Janssen taught us, in the year 1868, how to observe them in full sunlight by means of the spectroscope.