The quantity of solar dust which reaches our atmosphere will naturally vary in proportion with the eruptive activity of the sun. The quantity of dust in the higher strata influences the color of the light of the sun. After the eruption of the volcano Rakata on Krakatoa, in 1883, and again, though to a lesser degree, after the eruption of Mont Pelée on Martinique, red sunsets and sunrises were observed all over the globe. At the same time, another phenomenon was noticed which could be estimated quantitatively. The light of the sky is polarized with the exception of the light coming from a few particular spots. Of these spots, one called Arago’s Point is situated a little above the antipode of the sun, and another, Babinet’s Point, is situated above the sun. If we determine the elevation of these points above the horizon at sunset, we find in accordance with the theoretical deduction that this elevation is greater when the higher strata of the atmosphere are charged with dust (as after the eruption of Rakata) than under normal conditions. Busch, a German scientist, analyzed the mean elevation of these points (stated in degrees of arc) at sunset, and found the following peculiar numbers:

1886’87’88’89’90’91’92’93’94’95Mean
Arago’s Point20.119.718.417.817.720.619.620.220.718.819.4
Babinet’s Point23.921.917.956.815.423.321.524.223.319.020.7
Sun-spot Number21.119.16.76.16.535.673.884.978.063.940.0

There is a distinct parallelism in these series of figures. Almost simultaneously with the sun-spot maximum the height of the two so-called neutral points above the horizon attains its maximum at sunset, and the same applies to the minimum. That the phenomena in the atmosphere take place a little later than the phenomena on the sun which caused them is perhaps only natural.

When the air is rich in dust, or when it is strongly ionized by kathode rays, conditions are favorable for the formation of clouds. This can be observed, for instance, with auroral lights. They regularly give rise to a characteristic cloud formation, so much so that Adam Paulsen was able to recognize polar lights by the aid of these clouds in full daylight. Klein has compiled a table on the connection between the frequency of the higher clouds, the so-called cirrus clouds, at Cologne, and the number of sun-spots during the period 1850-1900. He demonstrates that during this half-century, which comprises more than four sun-spot periods, the sun-spot maxima fell in the years in which the greatest number of cirrus clouds had been observed. The minima of the two phenomena are likewise in agreement.

A similarly intensified formation of clouds seems also to occur on Jupiter when sun-spots are frequent. Vogel states that Jupiter at such times shines with a whiter light, while at sun-spot minima it appears of a deeper red. The deeper we are able to peep into the atmosphere of Jupiter, the more reddish it appears. During periods of strong solar activity the higher portions of Jupiter’s atmosphere therefore appear to be crowded with clouds.

The discharge of the charged solar dust in our atmosphere calls forth the polar lights.

The polar lights occur, as the name indicates, most frequently in the districts about the poles of the earth. They are, however, not actually more frequent the nearer we come to the poles; but they attain a maximum of frequency in circles which enclose the magnetic and the geographical poles. The northern maximum belt passes, via Cape Tscheljuskin, north of Novaja Semlja, along the northwestern coast of Norway, a few degrees to the south of Iceland and Greenland, right across Hudson Bay and over the northwestern extension of Alaska. When we go to the south of this belt, the auroras, or boreal lights, diminish markedly. They are four times less frequent in Edinburgh, and fifteen times less frequent in London or New York, than in the Orkney Islands or Labrador.

Paulsen divides the auroras into two classes, which behave quite differently in several respects. The great difficulties which the solution of the problems of polar lights has so far offered seem to a large extent to be due to the fact that all polar lights were treated as being of the same kind.

The polar lights of the first class do not display any streamers. They cover a large portion of the sky in a horizontal direction. They are very quiet, and their light is strikingly constant. As a rule, they drift slowly towards the zenith, and they do not give rise to any magnetic disturbances.

These polar lights generally have the shape of an arch whose apex is situated in the direction of the magnetic meridian (Fig. 38). Sometimes several arches are grouped one above another.