GREENWICH

Jan.Feb.Mar.AprilMayJuneJulyAug.Sept.Oct.Nov.Dec.
Means0.931.231.221.090.810.710.810.901.151.181.020.83

The daily variation of the disturbances has been analyzed by Van Bemmelen for the period 1882-1893 and for the observatory of Batavia, on Java. The maximum occurs there about 1 P.M., and is about 1.86 times as great as the average value for the day. The minimum of 0.48 occurs at 11 P.M. Between 8 P.M. and 3 A.M. the disturbances are almost as rare as about 11 o’clock at night.

The variation is greatest with that declination which has its maximum of 3.26 at 12 M., and its minimum of 0.14 at 11 P.M.

The period of almost 26 days first investigated by Hornstein has also been refound in the magnetic variations and disturbances by Broun, Liznár, and C. A. Müller. It must be added, however, that Schuster does not consider these data as in any way conclusive.

The moon has also a slight influence upon the magnetic needle, as Kreil proved as early as 1841. The effect is in a different sign in the northern and southern hemispheres, and may be likened to a tidal phenomenon.

The ultra-violet rays of the sun are strongly absorbed by the atmosphere, and they cause an ionization of the molecules of the air. This ionization is, on the whole, more marked at higher altitudes. The ascending air currents carry with them water vapor which is condensed on the ions, particularly on the negative ions. In this way most clouds become negatively charged; this interesting fact—i.e., that they are more frequently charged with negative than with positive electricity—was first proved by Franklin in his kite experiments. When the rain-drops have fallen, the air above remains positively charged; this has been observed during balloon ascensions. The clouds which are formed at high levels are most strongly charged; for this reason thunder-storms over land occur mostly in the summer-time. The thunder-storms also show the 26-day period, as Bezold has proved for southern Germany, and Ekholm and myself have shown for Sweden.

A vast amount of material concerning these questions and magnetic phenomena in particular has been collected by the various meteorological observatories and is awaiting analysis.

Although some observers like Sidgreaves question the correlation of sun-spots and polar lights or magnetic disturbances, because strong spots have been seen on the disk of the sun without any magnetic disturbances having been noticed, yet the view predominates that the magnetic disturbances are caused by sun-spots when the sun-spots cross the central meridian of the sun which is opposite the earth. Thus Maunder observed a magnetic storm and a northern light succeeding the passage of a large sun-spot through the central solar meridian on the 8th to the 10th of September, 1898. The magnetic effect attained its maximum about twenty-one hours after the passage through the meridian.

Similarly Riccò established in ten instances, in which exact determination was possible, a time interval of 45.5 hours on an average between the meridian passage of a spot and the maximum magnetic effect. Riccò also submitted to an analysis the data which Ellis had collected and which Maunder had investigated. He found for these instances, on an average, almost exactly the same numbers, the time interval being 42.5 hours. That would correspond to a mean velocity of the solar dust of from 910 to 980 km. per second. On the other hand, we have no difficulty at all in calculating the time which a spherule of a diameter of 0.00016 mm. (those particles travel fastest) and of the specific gravity of water would need in order to reach the earth, under the influence of solar gravitation and of a mechanical radiation pressure 2.5 times as large from the outside of the sun. The time found, 56.1 hours, corresponds to a mean velocity of 740 km. per second. In order that the solar dust may move with the velocity calculated by Riccò, its specific gravity should be less than 1—viz., 0.66 and 0.57. This value looks by no means improbable, when we assume that the spherules consist of hydrocarbons saturated with hydrogen, helium, and other noble gases. We should also arrive at larger velocities for the solar dust, as has already been pointed out with regard to the tails of comets, when we presume that the particles consist of felted marguerites of carbon or silicates, or of iron—materials which we regard as the main constituents of meteorites.