Fig. 51.—Central portion of the great nebula in Orion. Taken at the Yerkes Observatory. Scale, 1 mm. = 12 sec. of arc
Some nebulæ, like the so-called planetary nebulæ, offer rather the appearance of luminous spheres. We may assume in these cases that the explosions were less violent, and that the spirals, therefore, are situated so closely together that they seem to merge into one another. Possibly the inequalities in their development have become equalized in the course of time. A few nebulæ are ring-shaped, as the well-known nebula of Lyra (see [Fig. 50]). These rings may, again, have been formed out of spiral nebulæ, and the spirals may have gradually been obliterated by rotation, while the central nebulous matter may have been concentrated on the planets travelling round the central star. Schaeberle, an eminent American astronomer, has discovered traces of spiral shape also in the Lyra nebula.
Another kind of nebula is the ordinary nebula of vast extension and irregular shape, evidently formed out of most extremely attenuated matter; well-known characteristic examples are found in Orion, about the Pleiades, and in the Swan (Figs. 51, 52, and 53). In these nebulæ portions of a spiral structure have likewise often been discerned.
Fig. 52.—Nebular striæ in the stars of the Pleiades. Taken at the Yerkes Observatory on October 19, 1901. Scale, 1 mm. = 42.2 sec. of arc
We have said that the collision between two celestial bodies would result in the formation of a spiral with two wings. If the impact is such that the two centres of the celestial bodies move straight towards each other, a disk will arise, and not a spiral; or if one star is much smaller than the other, possibly a cone, because the gases will uniformly be spread in all directions about the line of impact. A perfectly central impact is obviously very rare; but there may be cases which approach this limiting condition more or less, especially when the relative velocity of the two bodies is small. By slow diffusion a feebly developed spiral may also be converted into a rotating disklike structure. The extension of these nebular structures will depend upon the ratio between the mass of the system and the velocity of ejection of the gases. If, for example, two extinct suns of nearly equal dimensions and mass, like our sun, should collide, some gas masses would travel into infinite space, being hurled out with a velocity of more than 900 km. (550 miles) per second; while other particles, moving at a slower rate, would remain in the neighborhood of the central body. The nearer to that body, the smaller was their velocity. From their position they might fall back into the central body, to be reincorporated in it, if two circumstances did not prevent this. The one circumstance is the enormous radiation pressure of the glowing central mass. That pressure keeps masses of dust particles floating, which by friction will carry the surrounding masses of gas with them. Owing to the absorption of the radiation by the dust particles, only the finer particles will be supported farther outside, and at the extreme margin of the nebula even the very finest dust will no longer be maintained in suspension by the greatly weakened radiation pressure. Thus we arrive at an outer limit for the nebula. The other circumstance is the violent rotation which is set up by the impact of the central bodies. The rotation and the centrifugal forces will produce a disk-shaped expansion of the whole central mass. Owing to molecular collisions and to tidal effects, the angular velocity will in the denser portions tend to become uniform, so that the whole will rotate like a flattened-out ball filled with gas, and the spiral structure will gradually disappear in those parts. In the more remote particles the velocity will only increase to such an extent as to equal that of a planet moving at the same distance—that is to say, the gravitation towards the central body will be balanced by the centrifugal force, and at the very greatest distances the molecular bombardments, as well as gravitation towards the centre, will become so insignificant that any masses collected there will retain their shape for an almost unlimited space of time.
In the centre of this system the main bulk of the matter would be concentrated in a sun of extreme brightness, whose light intensity would, however, owing to strong radiation, diminish with comparative rapidity.
Fig. 53.—Nebular striæ in the Swan. New General Catalogue, 6992. Taken at the Yerkes Observatory on October 5, 1901. Scale, 1 mm. = 41 sec. of arc