By far the largest number of variable stars belong to the type of Mira. Others resemble the variable star Beta in the constellation of the Lyre, and thus belong to the Lyre type. The variability of the spectra of a great many of these stars indicates that they must be moving about a dark star as companion, or rather that they both move about a common centre of gravity. The change in the light intensity is, as a rule, explained by the supposition that the bright star is partially obscured at times by its dark companion. Many irregularities, however, in their periods and other circumstances prove that this explanation is not sufficient. The assumption of rings of dust circulating about the star and of larger condensation centres affords a better elucidation of the variability of these stars. They are grouped with the white or yellow stars, in whose surroundings the dust does not play so large a part as in that of Mira Ceti. The period of their variability is, as a rule, very short, moreover—generally only a few days (the shortest known, only four hours)—while the period of the Mira stars amounts to at least sixty-five days, and may attain two years. There may be still longer periods so far not investigated.
Nearly related to the Lyre stars are the Algol stars, whose variability can be explained by the assumption that another bright or dark star is moving within their vicinity, partially cutting off their light. There is no dust in these cases, and the spectrum characterizes these stars as stars of the first class—that is, as white stars—so far as they have been studied up to the present.
We must presume for all the variable stars that the line of sight from the observer to the star falls in the plane of their dust rings or of their companions. If this were not so, they would appear to us like a nebula with a central condensation nucleus, or, so far as Algol stars are concerned, like the so-called spectroscopic doubles whose motion about each other is recognized from the displacement of their spectral lines.
The evolution of stars from the nebulous state has been depicted by the famous chief of the Lick Observatory, in California, W. W. Campbell, as follows (compare the spectra of the stars of the 2d, 3d, and 4th class, Figs. 59 and 60):
Fig. 59.—Comparison of spectra of stars of classes 2, 3, 4. After photographs taken at the Yerkes Observatory. Blue portions of spectrum. Wave-lengths in millionths of a millimetre
The rows are labelled:
74 Schjellerup’s Catalogue Class 4
My, in Gemini Class 3
Sun Class 2
280 Schjellerup’s Catalogue Class 4
Fig. 60.—Comparison of spectra of stars of classes 2, 3, 4. After photographs taken at the Yerkes Observatory. Green and yellow portions of spectrum. Wave-lengths in millionths of a millimetre
The rows are labelled:
280 Schjellerup’s Catalogue Class 4
Sun Class 2
My, in Gemini Class 3
74 Schjellerup’s Catalogue Class 4