This view was probably foreshadowed long ago. Definite suggestions in this direction we find in the writings of the Frenchman Sales-Guyon de Montlivault (1821), who assumed that seeds from the moon had awakened the first life on the surface of the earth. The German physician H. E. Richter attempted to supplement the doctrine of Darwin by combining the conception of panspermia with it. Flammarion’s book on the plurality of inhabited worlds suggested to Richter the idea that seeds had come from some other inhabited world to our earth. He emphasizes the fact that carbon has been found in meteorites which move in orbits similar to those of the comets which wander about in space; and in this carbon he sees the rests of organic life. There is no proof at all for this latter opinion. The carbon found in meteorites has never exhibited any trace of organic structure, and we may well imagine the carbon—e.g., that which appears to occur in the sun—to be of inorganic origin. Still more fantastic is his idea that organisms floating high in our atmosphere are caught by the attraction of meteorites flying past our planet, and are in this way carried out into universal space and deposited upon other celestial bodies. As the surface of meteorites becomes incandescent in their flight through the atmosphere, any germs which they might possibly have caught would be destroyed; and if, in spite of that, a meteorite should become the conveyor of live germs, those germs would be burned in the atmosphere of the planet on which they descended.

In one point, however, we must agree with Richter. There is logic in his statement that "The infinite space is filled with, or (more correctly) contains, growing, mature, and dying celestial bodies. By mature worlds we understand those which are capable of sustaining organic life. We regard the existence of organic life in the universe as eternal. Life has always been there; it has always propagated itself in the shape of living organisms, from cells and from individuals composed of cells." Man used to speculate on the origin of matter, but gave that up when experience taught him that matter is indestructible and can only be transformed. For similar reasons we never inquire into the origin of the energy of motion. And we may become accustomed to the idea that life is eternal, and hence that it is useless to inquire into its origin.

The ideas of Richter were taken up again in a popular lecture delivered in 1872 by the famous botanist Ferdinand Cohn. The best-known expression of opinion on the subject, however, is that of Sir William Thomson (later Lord Kelvin) in his presidential address to the British Association at Edinburgh in 1871:

"When two great masses come into collision in space, it is certain that a large part of each is melted; but it seems also quite certain that in many cases a large quantity of débris must be shot forth in all directions, much of which may have experienced no greater violence than individual pieces of rock experience in a landslip or in blasting by gunpowder. Should the time when this earth comes into collision with another body, comparable in dimensions to itself, be when it is still clothed as at present with vegetation, many great and small fragments carrying seed and living plants and animals would undoubtedly be scattered through space. Hence, and because we all confidently believe that there are at present, and have been from time immemorial, many worlds of life besides our own, we must regard it as probable in the highest degree that there are countless seed-bearing meteoric stones moving about through space. If at the present instant no life existed upon this earth, one such stone falling upon it might, by what we blindly call natural causes, lead to its becoming covered with vegetation. I am fully conscious of the many objections which may be urged against this hypothesis. I will not tax your patience further by discussing any of them on the present occasion. All I maintain is that I believe them to be all answerable."

Unfortunately we cannot share Lord Kelvin’s optimism regarding this point. It is, in the first instance, questionable whether living beings would be able to survive the violent impact of the collision of two worlds. We know, further, that the meteorite in its fall towards the earth becomes incandescent all over its surface, and any seeds on it would therefore be deprived of their germinating power. Meteorites, moreover, show quite a different composition from that of the fragments from the surface of the earth or a similar planet. Plants develop almost exclusively in loose soil, and a lump of earth falling through our atmosphere would, no doubt, be disintegrated into a shower of small particles by the resistance of the atmosphere. Each of these particles would by itself flash up like a shooting-star, and could not reach the earth in any other shape than that of burned dust. Another difficulty is that such collisions, which, as we presume, are responsible for the flashing-up of so-called new stars, are rather rare phenomena, so that little likelihood remains of small seeds being transported to our earth in this manner.

The question has, however, entered into a far more favorable stage since the effects of radiation have become understood.

Bodies which, according to the deductions of Schwarzschild, would undergo the strongest influence of solar radiation must have a diameter of 0.00016 mm., supposing them to be spherical. The first question is, therefore: are there any living seeds of such extraordinary minuteness? The reply of the botanist is that the so-called permanent spores of many bacteria have a size of 0.0003 or 0.0002 mm., and there are, no doubt, much smaller germs which our microscopes fail to disclose. Thus, yellow-fever in man, rabies in dogs, the foot-and-mouth disease in cattle, and the so-called mosaic disease—common to the tobacco plant in Netherlandish India, and also observed in other countries—are, no doubt, parasitical diseases; but the respective parasites have not yet been discovered, presumably because they are too minute to be visible under the microscope.[20]

It is, therefore, very probable that there are organisms so small that the radiation pressure of a sun would push them out into space, where they might give rise to life on planets, provided they met with favorable conditions for their development.

We will, in the first instance, make a rough calculation of what would happen if such an organism were detached from the earth and pushed out into space by the radiation pressure of our sun. The organism would, first of all, have to cross the orbit of Mars; then the orbits of the smaller and of the outer planets; and, having passed the last station of our solar system, the orbit of Neptune, it would drift farther into infinite space towards other solar systems. It is not so difficult to estimate the time which the smallest particles would require for this journey. Let their specific gravity be that of water, which will very fairly correspond to the facts. The organisms would cross the orbit of Mars after twenty days, the Jupiter orbit after eighty days, and the orbit of Neptune after fourteen months. Our nearest solar system, Alpha Centauri, would be reached in nine thousand years. These calculations have been made under the supposition that the radiation pressure is four times as strong as gravitation, which would be nearly correct according to the figures of Schwarzschild.[21]

These time intervals required for the organisms to reach the different planets of our solar system are not too long for the germs in question to preserve their germinating power. The estimate is more unfavorable in the case of their transference from one planetary system to another, which will require thousands of years. But we shall see further on that the very low temperature of those parts of space (about -220° C.) would suspend the extinction of the germinating power, as it arrests all chemical reactions.