We now turn to earthquakes. No country has been absolutely spared by earthquakes. In the districts bounding upon the Baltic, and especially in northern Russia, they have, however, been of a quite harmless type. The reason is that the earth-crust there has been lying undisturbed for long geological epochs and has never been fractured. The comparatively severe earthquake which shook the west coast of Sweden on October 23, 1904, to an unusually heavy degree, without, however, causing any noteworthy damage (a few chimneys were knocked over), was caused by a fault of relatively pronounced character for those districts in the Skager-Rack—a continuation of the deepest fold in the bottom of the North Sea, the so-called Norwegian Trough, which runs parallel to the Norwegian coast. In Germany, the Vogtland and the districts on both sides of the middle Rhine have frequently been visited by earthquakes. Of other European countries, Switzerland, Spain, Italy, and the Balkan Peninsula, as well as the Karst districts of Austria, have often suffered from earthquakes.

Fig. 10.—Chief earthquake centres, according to the British Association Committee

According to the committee appointed by the British Association for the investigation of earthquakes—a committee which has contributed a great deal to our knowledge of these great natural phenomena—earthquakes of some importance emanate from certain centres which have been indicated on the subjoined map (Fig. 10). The most important among these regions comprises Farther India, the Sunda Isles, New Guinea, and Northern Australia; it is marked on the map by the letter F. From this district have emanated in the six-year period 1899-1904 no fewer than 249 earthquakes, which have been recorded in many observatories far removed from one another. This earthquake centre F is closely related to the one marked E, in Japan, from which 189 earthquakes have proceeded. Next to this comes the extensive district K with 174 earthquakes, comprising the most important folds in the crust of the Old World, including the mountain chains from the Alps to the Himalaya. This district is interesting, because it has been disturbed by a great many earthquakes, although it is almost entirely situated on the Continent. After that we have the districts A, B, C, with 125, 98, and 95 earthquakes. They are situated near lines of fracture in the earth-crust along the American coast of the Pacific Ocean and the Caribbean Sea. District D, with 78 earthquakes, is similarly situated. The three last-mentioned districts, B, C, D, as well as G, between Madagascar and India, with 85 earthquakes, all seem to be surpassed by the district H in the eastern Atlantic, with its 107 earthquakes. These latter are, however, relatively feeble, and we owe their accurate records probably to the circumstances that a great many earthquake observatories are situated within the immediate surroundings of this district. The same may be said of the district I, or Newfoundland, which is not characterized by many earthquakes, and of the district J, between Iceland and Spitzbergen, with 31 and 19 earthquakes respectively. The last on the list used to be the district L, situated about the South Pole, with only eight earthquakes. This small number is probably merely due to the want of observatories in those parts of the earth. Another district, M, has finally been added, which extends to the southwest from New Zealand. No fewer than 75 intense earthquakes were recorded between March 14 and November 23, 1903, by the Discovery Expedition, in 70° southern latitude and 178° eastern longitude.

Earthquakes commonly occur in swarms or groups. Thus, more than 2000 shocks were counted on Hawaii in March, 1868. During the earthquakes which devastated the district of Phokis, in Greece, in 1870-73, shocks succeeded one another for a long time at intervals of three seconds. During the whole period of three and a half years about half a million shocks were counted, and, further, a quarter of a million subterranean reports which were not accompanied by noticeable concussions. Yet of all these shocks only about 300 did noteworthy damage, and only 35 were considered worth being reported in the newspapers. The concussion of October 23, 1904, belonged to a group which lasted from October 10 to October 28, and in which numerous small tremors were noticed, especially on October 24 and 25. The earthquake of San Francisco commenced on April 18, 1906, at 5 hrs. 12 min. 6 sec. A.M. (Pacific Ocean time), and ended at 5 hrs. 13 min. 11 sec, lasting therefore 1 minute and 5 seconds. Twelve smaller shocks succeeded in the following hour. Before 6 hrs. 52 min. P.M., nineteen further concussions were counted, and various smaller shocks succeeded in the following days.

With such groups of earthquakes weaker tremors usually precede the violent destructive shocks and give a warning. Unfortunately this is not always so, and no warning was given by the earthquakes which destroyed Lisbon in 1755 and Caracas in 1812, nor by those which devastated Agram in 1880, nor, finally, in the case of the San Francisco disaster. A not very severe earthquake without feebler precursors befell Ischia in 1881, while the violent catastrophe which devastated this magnificent island in 1883 was heralded by several warnings. As in San Francisco and Chili in 1906, less violent concussions generally succeed the destructive shocks. Earthquakes like that of Lisbon in 1755, consisting of a single shock, are very rare.

The violent concussions often produce large fissures in the ground. Such were noticed in several places at San Francisco. One of the largest fissures known, that of Midori, in Japan, was caused by the earthquake of October 20, 1891. It left a displacement of the ground ranging up to 6 m. (20 ft.) in the vertical and 4 m. (13 ft.) in the horizontal direction. This crack had a length of not less than 65 km. (40 miles). Extensive fissures were also formed by the earthquakes of Calabria, in 1783, at Monte San Angelo, and in the sandstones of the Bálpakrám Plateau in India, in 1897. In mountainous districts falls of rock are a frequent consequence of the formation of fissures and earthquakes. A large number of rocks fell in the neighborhood of Delphi during the Phokian earthquake. On January 25, 1348, an earthquake sent down a large portion of Mount Dobratsch (in the Alps of Villach, in Carinthia, which is now much frequented by tourists) and buried two towns and seventeen villages. The earthquake of April 18, 1906, in California started from a crack which extends from the mouth of Alder Creek, near Point Arena, running parallel with the coast-line mostly inland, then entering the sea near San Francisco, and turning again inland between Santa Cruz and San José, finally proceeding via Chittenden up to Mount Pinos, a distance of about 600 km. (400 miles), in the direction of N. 35° W. to S. 35° E. Along this crack the two masses of the earth have been displaced so that the ground situated to the southwest of the fissure has been moved by about 3 m. (10 ft.), and in some spots even by 6 m. (20 ft.) towards the northwest. In some localities in Sonoma and Mendocino counties the southwestern part has been raised, but nowhere by more than 1.2 m. (4 ft.). This is the longest crack which has ever been noticed in connection with an earthquake.

Fig. 11.—Clefts in Valentia Street, San Francisco, after the earthquake of 1906

The earthquake over, the ground does not always return to its original position, but remains in a more or less wavy condition. This can most easily be observed in districts where streets or railways cross the ground. It is reported, for instance, that the track of the tramway-lines in Market Street, the chief thoroughfare of San Francisco, formed large wavelike curves after the earthquake.