The choice is additionally complicated by the very great variation found in the strength and characteristics of trees of exactly the same species, and also of different portions cut from the same tree. The nature of the site upon which a tree is grown exercises a marked influence upon its properties, while as a general rule, it may be taken that the greater number of annual growth rings per inch, the greater the strength. It is also a general rule that up to certain diameters, the timber contained in that part of the tree the greatest distance from the pith, or centre, is the stronger.

The wood obtained from the base of a tree is heavier than that at the top, and one finds the influence of this in the necessity for balancing and alternating the different laminæ of air-screws before gluing.

Shrinkage.

Another point, and one which is intimately concerned with the proper seasoning of timber, is the amount of moisture contained in a specimen, and this latter point is of some considerable importance, as not only is a large amount of moisture detrimental to the strength values of the timber, but it also renders useless any attempt at precision of workmanship. It is this very point of shrinkage, which constitutes the greatest bar to the achievement of a measure of component standardization, and it is also one of the most serious disabilities of wood as a material for aircraft construction. It is now necessary in the production of finished parts to make some allowance for resultant shrinkage, which is a matter of guesswork, and only practicable where some time will elapse between the finishing of the part and its erection in the complete machine. Under present conditions, more often than not the parts are assembled almost immediately they are made, which means that no allowance over the actual size is possible, this being due to the various fittings which in the majority of machines are of set dimensions and clip or surround the material.

As a natural sequence shrinkage occurs subsequent to the attachment of the fitting, followed by looseness and loss of alignment in the structure. Until the proper period for seasoning can elapse, between the cutting of the tree and its conversion into aeroplane parts, it is difficult to see how this disability can be obviated, although latterly some considerable advances have been made with artificial methods of seasoning. The prejudice against kiln drying is founded on the belief that the strength of the timber is reduced, and that extraneous defects are induced. A method which is a distinct improvement on those systems, using superheated steam and hot air, is now being used with apparently good results. In this system, steam under very low compression is constantly circulated through the timber, drying being effected by a gradual reduction in the humidity of the atmosphere.

Unreliability of Tabulated Tests.

The various tables which exist indicating the strength, weight, and characteristics of various woods are of very doubtful utility, in some cases fallacious, and in nearly all cases far too specific. The foregoing enumeration of some of the variations existing with wood will indicate the enormous difficulty of obtaining with any exactitude a result representative of the species of wood tested, and which could be regarded as reliable data for the calculation of stresses, or for general design. The moisture content of timber, an extremely variable quantity, greatly affects the figures relating to the strength and weight of timber, so that tables indicating the properties of woods should include the percentage of moisture contained in the examples tested. Again, certain woods possessing relatively high strength values, are frequently short-grained and brittle, and therefore not so suitable as other woods of lower strength values, but of greater elasticity and resiliency.

Woods in Use.

Silver Spruce.

The wood most extensively used for the main items of construction is silver spruce, or Sitka spruce, found in great quantities in British Columbia. Experience has proved this wood pre-eminently suitable for aeroplane construction, its strength-weight ratio is particularly good, it can be (at least until recently) obtained in long lengths up to 30 ft., and, moreover, is particularly straight grained and free from knots and other defects. There are other woods possessing higher strength qualities, but in most cases their value is greatly diminished by reason of the greater weight, and that only a limited portion straight of grain and free from knots is obtainable. The weight of Sitka spruce varies from 26 to 33 lbs. per cubic foot, and although it is difficult to give a precise figure, a good average specimen fairly dry would weigh about 28 lbs. per cubic foot. Some impression of the extent to which it enters into the construction of the aeroplane will be gathered if the components usually of spruce are detailed. For the main spars of the planes spruce is almost universally used, as here great strength for the least weight is of extreme importance, while a consideration almost as important is the necessity of a good average length, straight grained and free from defects. It is also used for the webs and flanges of the wing ribs, the leading and trailing edges and wing structure generally. The longerons or rails of the fuselage of many machines are spruce, although in this instance ash and hickory are used to a moderate extent. The growing practice is to make the front portion of the fuselage of ash, as this is subject to the greater stress, while the tail portion is of spruce; but in a number of cases the latter material is used throughout. The cross struts of the fuselage are invariably of spruce, as well as such items as interplane and undercarriage struts and streamline fairings.