different date—2 Ahau 3 Cumhu, 2 Ahau 3 Zotz, and 2 Ahau 13 Yax. In these pages the month signs, with a few exceptions, do not follow immediately the days to which they belong, but on the contrary they are separated from them by several intervening glyphs. This abbreviation in the record of these dates was doubtless prompted by the desire or necessity for economizing space. In the above example, instead of repeating the 2 Ahau with each of the two lower month signs, 3 Zotz and 13 Yax, by writing it once above the upper month sign, 3 Cumhu, the scribe intended that it should be used in turn with each one of the three month signs standing below it, to form three different dates, saving by this abbreviation the space of two glyphs, that is, double the space occupied by 2 Ahau.
With the exception of the Initial-series dates in the inscriptions and the Venus-Solar dates on pages 46-50 of the Dresden Codex, we may say that the regular position of the month glyphs in Maya writing was immediately following the day glyphs whose positions in the year they severally designated.
In closing the presentation of this last step in the process of deciphering numbers in the texts, the great value of the terminal date as a final check for all the calculations involved under steps 1-4 (pp. [134]-[151]) should be pointed out. If after having worked out the terminal date of a given number according to these rules the terminal date thus found should differ from that actually recorded under step 5, we must accept one of the following alternatives:
1. There is an error in our own calculations; or
2. There is an error in the original text; or
3. The case in point lies without the operation of our rules.
It is always safe for the beginner to proceed on the assumption that the first of the above alternatives is the cause of the error; in other words, that his own calculations are at fault. If the terminal date as calculated does not agree with the terminal-date as recorded, the student should repeat his calculations several times, checking up each operation in order to eliminate the possibility of a purely arithmetical error, as a mistake in multiplication. After all attempts to reach the recorded terminal date by counting the given number from the starting point have failed, the process should be reversed and the attempt made to reach the starting point by counting backward the given number from its recorded terminal date. Sometimes this reverse process will work out correctly, showing that there must be some arithmetical error in our original calculations which we have failed to detect. However, when both processes have failed several times to connect the starting point with the recorded terminal date by use of the given number, there remains the possibility that either the starting point or the terminal date, or perhaps both, do not belong to the given number. The rules for determining this fact
have been given under step 2, page [135], and step 4, page [138]. If after applying these to the case in point it seems certain that the starting point and terminal date used in the calculations both belong to the given number, we have to fall back on the second of the above alternatives, that is, that there is an error in the original text.
Although very unusual, particularly in the inscriptions, errors in the original texts are by no means entirely unknown. These seem to be restricted chiefly to errors in numerals, as the record of 7 for 8, or 7 for 12 or 17, that is, the omission or insertion of one or more bars or dots. In a very few instances there seem to be errors in the month glyph. Such errors usually are obvious, as will be pointed out in connection with the texts in which they are found (see Chapters V and VI).
If both of the above alternatives are found not to apply, that is, if both our calculations and the original texts are free from error, we are obliged to accept the third alternative as the source of trouble, namely, that the case in point lies without the operation of our rules. In such cases it is obviously impossible to go further in the present state of our knowledge. Special conditions presented by glyphs whose meanings are unknown may govern such cases. At all events, the failure of the rules under 1-4 to reach the terminal dates recorded as under 5 introduces a new phase of glyph study—the meaning of unknown forms with which the beginner has no concern. Consequently, when a text falls without the operation of the rules given in this chapter—a very rare contingency—the beginner should turn his attention elsewhere.