[102] The student may prove this for himself by reducing 9.0.0.0.0 to days (1,296,000), and counting forward this number from the date 4 Ahau 8 Cumhu, as described in the rules on pages [138]-[143]. The terminal date reached will be 8 Ahau 13 Ceh, as given above.
[103] Numbers may also be added to or subtracted from Period-ending dates, since the positions of such dates are also fixed in the Long Count, and consequently may be used as bases of reference for dates whose positions in the Long Count are not recorded.
[104] In adding two Maya numbers, for example 9.12.2.0.16 and 12.9.5, care should be taken first to arrange like units under like, as:
| 9. | 12. | 2. | 0. | 16 |
| 12. | 9. | 5 | ||
| ——————— | ||||
| 9. | 12. | 14. | 10. | 1 |
Next, beginning at the right, the kins or units of the 1st place are added together, and after all the 20s (here 1) have been deducted from this sum, place the remainder (here 1) in the kin place. Next add the uinals, or units of the 2d place, adding to them 1 for each 20 which was carried forward from the 1st place. After all the 18s possible have been deducted from this sum (here 0) place the remainder (here 10) in the uinal place. Next add the tuns, or units of the 3d place, adding to them 1 for each 18 which was carried forward from the 2d place, and after deducting all the 20s possible (here 0) place the remainder (here 14) in the tun place. Proceed in this manner until the highest units present have been added and written below.
Subtraction is just the reverse of the preceding. Using the same numbers:
| 9. | 12. | 2. | 0. | 16 |
| 12. | 9. | 5 | ||
| ——————— | ||||
| 9. | 11. | 9. | 9. | 11 |
5 kins from 16 = 11; 9 uinals from 18 uinals (1 tun has to be borrowed) = 9; 12 tuns from 21 tuns (1 katun has to be borrowed, which, added to the 1 tun left in the minuend, makes 21 tuns) = 9 tuns; 0 katuns from 11 katuns (1 katun having been borrowed) = 11 katuns; and 0 cycles from 9 cycles = 9 cycles.
[105] The Supplementary Series present perhaps the most promising field for future study and investigation in the Maya texts. They clearly have to do with a numerical count of some kind, which of itself should greatly facilitate progress in their interpretation. Mr. Goodman (1897: p. 118) has suggested that in some way the Supplementary Series record the dates of the Initial Series they accompany according to some other and unknown method, though he offers no proof in support of this hypothesis. Mr. Bowditch (1910: p. 244) believes they probably relate to time, because the glyphs of which they are composed have numbers attached to them. He has suggested the name Supplementary Series by which they are known, implying in the designation that these Series in some way supplement or complete the meaning of the Initial Series with which they are so closely connected. The writer believes that they treat of some lunar count. It seems almost certain that the moon glyph occurs repeatedly in the Supplementary Series (see fig. [65]).
[106] The word "closing" as used here means only that in reading from left to right and from top to bottom—that is, in the normal order—the sign shown in fig. [65] is always the last one in the Supplementary Series, usually standing immediately before the month glyph of the Initial-series terminal date. It does not signify, however, that the Supplementary Series were to be read in this direction, and, indeed, there are strong indications that they followed the reverse order, from right to left and bottom to top.