It is clear from the foregoing that in addition to the Calendar Round, the Maya made use of a fixed starting point in describing their dates. The next question is, Did they record the lapse of more than 3,000 years simply by using so unwieldy a unit as the 52-year period or its multiples? A numerical system based on 52 as its primary unit immediately gives rise to exceedingly awkward numbers for its higher terms; that is, 52, 104, 156, 208, 260, 312, etc. Indeed, the expression of really large numbers in terms of 52 involves the use of comparatively large multipliers and hence of more or less intricate multiplications, since the unit of progression is not decimal or even a multiple thereof. The Maya were far too clever mathematicians to have been satisfied with a numerical system which employed units so inconvenient as 52 or its multiples, and which involved processes so clumsy, and we may therefore dismiss the possibility of its use without further consideration.

In order to keep an accurate account of the large numbers used in recording dates more than 3,000 years distant from the starting point, a numerical system was necessary whose terms could be easily handled, like the units, tens, hundreds, and thousands of our own decimal system. Whether the desire to measure accurately the passage of time actually gave rise to their numerical system, or vice versa, is not known, but the fact remains that the several periods of Maya chronology (except the tonalamatl, haab, and Calendar Round, previously discussed) are the exact terms of a vigesimal system of numeration, with but a single exception. (See Table VIII.)

Table VIII. THE MAYA TIME-PERIODS

1 kin = 1 days
20 kins = 1 uinal = 20 days
18 uinals = 1 tun = 360 days
20 tuns = 1 katun = 7,200 days
20 katuns = 1 cycle = 144,000 days
20[[40]] cycles = 1 great cycle = 2,880,000 days

Table [VIII] shows the several periods of Maya chronology by means of which the passage of time was measured. All are the exact terms of a vigesimal system of numeration, except in the 2d place (uinals),

in which 18 units instead of 20 make 1 unit of the 3d place, or order next higher (tuns). The break in the regularity of the vigesimal progression in the 3d place was due probably to the desire to bring the unit of this order (the tun) into agreement with the solar year of 365 days, the number 360 being much closer to 365 than 400, the third term of a constant vigesimal progression. We have seen on page [45] that the 18 uinals of the haab were equivalent to 360 days or kins, precisely the number contained in the third term of the above table, the tun. The fact that the haab, or solar year, was composed of 5 days more than the tun, thus causing a discrepancy of 5 days as compared with the third place of the chronological system, may have given to these 5 closing days of the haab—that is, the xma kaba kin—the unlucky character they were reputed to possess.

The periods were numbered from 0 to 19, inclusive, 20 units of any order (except the 2d) always appearing as 1 unit of the order next higher. For example, a number involving the use of 20 kins was written 1 uinal instead.

We are now in possession of all the different factors which the Maya utilized in recording their dates and in counting time:

1. The names of their dates, of which there could be only 18,980 (the number of dates in the Calendar Round).