It is clear that after one complete revolution of A, 18,980 days will have passed the starting point B, and that after two revolutions 37,960 days will have passed, and after three, 56,940, and so on. Indeed, it is only a question of the number of revolutions of A until as many as 1,500,000, or any number of days in fact, will have passed the starting point B, or, in other words, will have elapsed since the initial date, 4 Ahau 8 Cumhu. This is actually what happened according to the Maya conception of time.

For example, let us imagine that a certain Initial Series expresses in terms of cycles, katuns, tuns, uinals, and kins, the number 1,461,463, and that the date recorded by this number of days is 7 Akbal 11 Cumhu. Referring to figure [23], it is evident that 77 revolutions of the cogwheel A, that is, 77 Calendar Rounds, will use up 1,461,460 of the 1,461,463 days, since 77×18,980 = 1,461,460. Consequently, when 77 Calendar Rounds shall have passed we shall still have left 3 days (1,461,463 - 1,461,460 = 3), which must be carried forward into the next Calendar Round. The 1,461,461st day will be 5 Imix 9 Cumhu, that is, the day following 4 Ahau 8 Cumhu (see fig. [23]); the 1,461,462d day will be 6 Ik 10 Cumhu, and the 1,461,463d day, the last of the days in our Initial Series, 7 Akbal 11 Cumhu, the date recorded. Examples of this method of dating (by Initial Series) will be given in Chapter V, where this subject will be considered in greater detail.

THE INTRODUCING GLYPH

In the inscriptions an Initial Series is invariably preceded by the so-called "introducing glyph," the Maya name for which is unknown.

Several examples of this glyph are shown in figure [24]. This sign is composed of four constant elements:

1. The trinal superfix.

2. The pair of comblike lateral appendages.

3. The tun sign (see fig. [29], a, b).

4. The trinal subfix.