The second of these three numbers (see fig. [59]), if all of its seven terms belong to one and the same number, equals 455,393,401. Commencing at the bottom as in figure [58], the first term A4, has the coefficient 7. Since this is the term following the sixth, or great cycle, we may call it the great-great cycle. But we have seen that the

great cycle = 2,880,000; therefore the great-great cycle = twenty times this number, or 57,600,000. Our text shows, however, that seven of these great-great cycles are used in the number in question, therefore our first term = 403,200,000. The rest may be reduced by means of Table [VIII] as follows: B3, 18 great cycles = 51,840,000; A3, 2 cycles = 288,000; B2, 9 katuns = 64,800; A2, 1 tun = 360; B1, 12 uinals = 240; B1, 1 kin = 1. The sum of these (403,200,000 + 51,840,000 + 288,000 + 64,800 + 360 + 240 +1) = 455,393,401.

The third of these numbers (see fig. [60]), if all of its terms belong to one and the same number, equals 1,841,639,800. Commencing with A2, this has a coefficient of 1. Since it immediately follows the great-great cycle, which we found above consisted of 57,600,000, we may assume that it is the great-great-great cycle, and that it consisted of 20 great-great cycles, or 1,152,000,000. Since its coefficient is only 1, this large number itself will be the first term in our series. The rest may readily be reduced as follows: A3, 11 great-great cycles = 633,600,000; A4, 19 great cycles = 54,720,000; A5, 9 cycles = 1,296,000; A6, 3 katuns = 21,600; A7, 6 tuns = 2,160; A8, 2 uinals = 40; A9, 0 kins = 0.[[81]] The sum of these (1,152,000,000 + 633,600,000 + 54,720,000 + 1,296,000 + 21,600 + 2,160 + 40 + 0) = 1,841,639,800, the highest number found anywhere in the Maya writings, equivalent to about 5,000,000 years.

Whether these three numbers are actually recorded in the inscriptions under discussion depends solely on the question whether or not the terms above the cycle in each belong to one and the same series. If it could be determined with certainty that these higher periods in each text were all parts of the same number, there would be no further doubt as to the accuracy of the figures given above; and more important still, the 17 cycles of the first number (see A5, fig. [58]) would then prove conclusively that more than 13 cycles were required to make a great cycle in the inscriptions as well as in the codices. And furthermore, the 14 great cycles in A6, figure [58], the 18 in B3, figure [59], and the 19 in A4, figure [60], would also prove that more than 13 great cycles were required to make one of the period next higher—that is, the great-great cycle. It is needless to say that this point has not been universally admitted. Mr. Goodman (1897: p. 132) has suggested in the case of the Copan inscription (fig. [58]) that only the lowest four periods—the 19 katuns, the 10 tuns, the 0 uinals, and the 0 kins—A2, A3, and A4,[[82]] here form the number; and that if this number is counted backward from the Initial Series of the inscription, it will reach a Katun 17 of the preceding cycle. Finally, Mr. Goodman

believes this Katun 17 is declared in the glyph following the 19 katuns (A5), which the writer identifies as 17 cycles, and consequently according to the Goodman interpretation the whole passage is a Period-ending date. Mr. Bowditch (1910: p. 321) also offers the same interpretation as a possible reading of this passage. Even granting the truth of the above, this interpretation still leaves unexplained the lowest glyph of the number, which has a coefficient of 14 (A6).

The strongest proof that this passage will not bear the construction placed on it by Mr. Goodman is afforded by the very glyph upon which his reading depends for its verification, namely, the glyph which he interprets Katun 17. This glyph (A5) bears no resemblance to the katun sign standing immediately above it, but on the contrary has for its lower jaw the clasping hand (*

), which, as we have seen, is the determining characteristic of the cycle head. Indeed, this element is so clearly portrayed in the glyph in question that its identification as a head variant for the cycle follows almost of necessity. A comparison of this glyph with the head variant of the cycle given in figure [25], d-f, shows that the two forms are practically identical. This correction deprives Mr. Goodman's reading of its chief support, and at the same time increases the probability that all the 6 terms here recorded belong to one and the same number. That is, since the first five are the kin, uinal, tun, katun, and cycle, respectively, it is probable that the sixth and last, which follows immediately the fifth, without a break or interruption of any kind, belongs to the same series also, in which event this glyph would be most likely to represent the units of the sixth order, or the so-called great cycles.

The passages in the Palenque and Tikal texts (figs. [59] and [60], respectively) have never been satisfactorily explained. In default of calendric checks, as the known distance between two dates, for example, which may be applied to these three numbers to test their accuracy, the writer knows of no better check than to study the characteristics of this possible great-cycle glyph in all three, and of the possible great-great-cycle glyph in the last two.

Passing over the kins, the normal form of the uinal glyph appears in figures [58], A2, and 59, B1 (see fig. [31], a, b), and the head variant in figure [60], A8. (See fig. [31], d-f.) Below the uinal sign in A3, figure [58], and A2, figure [59], and above A7, in figure [60] the tuns are recorded as head variants, in all three of which the fleshless lower jaw, the determining characteristic of the tun head, appears. Compare these three head variants with the head variant for the tun in figure [29], d-g. In the Copan inscription (fig. [58]) the katun glyph, A4, appears as a head variant, the essential elements of which seem to be the oval in the top part of the head and the curling fang protruding from the back part of the mouth. Compare this head with the head variant for the katun in figure [27], e-h. In the Palenque and Tikal texts (see