CHAPTER II
The Chemical Elements Discovered since 1850

In 1850 the number of substances generally recognised as chemical elements, in the sense in which that term was first employed by Boyle, was sixty-two. Two members—viz., the pelopium of Rose and the ilmenium of Hermann—were, however, subsequently shown to be identical with metals already known. At the present time (1910) the number of the chemical elements definitely recognised as such is eighty-two. In 1850, as now, they were broadly classified as metals and non-metals, although it was felt then, no less strongly than now, that no very clear line of demarcation was traceable between the two groups. Sixty years ago the elements usually styled non-metals were thirteen in number; to-day the number is nineteen—the increase being due to the inclusion of arsenic and the discovery of the so-called inactive elements, helium, argon, krypton, neon, and xenon. In 1850 there were forty-seven elements definitely classed as metals; in 1910 the number is sixty-three.

At all periods in the history of chemistry as a science the general tendency has been to name substances, whenever possible, in accordance with the theoretical conceptions of the time, and hence it has happened that the same body at successive periods has had very dissimilar names. But in naming the substances we term elements, theoretical conceptions are not usually applicable. Oxygen, it is true, derives its name from such a conception; and, etymologically, the name connotes an error. Hydrogen, too, has no more right to be called the water former than oxygen. Davy, who invented the term chlorine, advocated that the chemical elements should be named from some distinguishing peculiarity, either of origin or of physical property. In the main this principle has been adopted especially in later years although there are numerous instances of names derived from pure arbitrary sources. It is largely for the reason that the names of the elements are, with rare exceptions, unconnected with theories that they have remained unchanged, whereas names of compounds, which are far more frequently dependent upon speculative ideas, have constantly been altered in order to comply with the prevailing hypotheses of the period. At the same time it is not always clear that the etymology of certain of the elements is well ascertained. It has been recently shown, for example that the commonly accepted origin of the word “antimony” from antimoine, based on the alleged experiences of mediæval ecclesiastics has no valid foundation. The word is, in reality, derived from the Arabic alhmoud: this became latinised to althimodium and eventually to antimonium.

By the middle of the nineteenth century the system of symbolical notation suggested by Berzelius was everywhere current; and, stripped largely of its dualistic associations, this system still remains the most generally convenient method of expressing the composition, analogies, and numerical relations of substances. During the middle of the last century philosophic chemists, although subscribing, with hardly an exception, to the doctrine of definite combining proportions, were by no means agreed as to the sufficiency of Dalton’s explanation of the experimental laws of chemical combination; and the hypothesis of atoms in the Daltonian sense was not universally accepted. To some the atomic theory of Dalton, which assumed that the combining proportion was identical with the relative weight of the atom, was unnecessary as an explanation of the laws of combination. Or at most it was only one out of a variety of molecular conditions in which matter might exist. Consequently some chemists were in the habit of drawing a distinction between chemical atoms and physical atoms. The chemical atom was identical with the Daltonian atom but this was by no means the same as the physical atom of Democritus or Leucippus. The view in 1850, in fact, was not very dissimilar from that to which recent experimental inquiry has led. But it can hardly be said that the doubts were dependent upon valid experimental evidence; they arose rather from the erroneous interpretation of imperfectly ascertained facts—upon the supposed inconsistencies of the law of Gay Lussac with the hypotheses of Avogadro and Ampère. As soon as the facts were clearly perceived and the inconsistencies reconciled we heard less of the supposed distinction between the chemical and the physical atom. It is only within quite recent time, and as the result of entirely new lines of inquiry, that the distinction has been revived.

In the early part of the last century attempts were made by Berzelius to classify the chemical elements according to their electro-chemical relations, and by Thomson according as they were “supporters” or “non-supporters of combustion.” It was soon perceived that Thomson’s system had no philosophical basis, and it quickly fell into disuse. After the discovery of isomorphism, an endeavour was made by Graham to arrange the simple bodies in accordance with their natural relations, and even before 1850 the various elements were grouped by him very much as now.

This scheme of classification, somewhat modified by considerations of valency, and occasionally corrected by more accurate information concerning true analogies (as when vanadium was transferred by Roscoe to the nitrogen group), was in general use for practically a quarter of a century—in fact, until it was superseded by the gradual adoption of Mendeléeff’s arrangement based on periodicity. There can, however, be little doubt that this attempt by Graham at a natural classification paved the way along which Newlands and eventually Mendeléeff were led to devise our present rational system of grouping the chemical elements.

The numerical relationships existing among the equivalents and atomic weights of the elements of certain of these groups, pointed out by Dumas, Pettenkofer, Odling, Gladstone, and others, gave rise to much speculation. The values of the gradational differences, of course, depended upon whether equivalents or atomic weights were employed; but the immediate point is that, whichever basis was adopted, definite numerical relations were to be perceived. Thus, in the case of the group of the halogens, it was pointed out that the individual members are connected together as follows:

Fluorine.Chlorine.Bromine.Iodine.
1935.580127
aa + da + 2d + d´2a + 2d + 2d´

where a = 19; d = 16.5; d´ = 28.