Samarium was discovered in 1879 by Lecoq de Boisbaudran in samarskite. Its salts are yellow, and afford in solution characteristic absorption bands.

It is not improbable that many of the minerals from which the so-called rare earths are obtained contain elements hitherto unrecognised, and it is possible that certain of the substances now assumed to be elements may, like didymium, turn out to be mixtures. In fact, additional elements have from time to time been announced, as for example, the decipium of Delafontaine (1878) and the monium or victorium of Crookes (1899), pronounced by Urbain to be identical with gadolinium: their individuality cannot as yet be said to be established. Didymium itself was stated by Krüss and Nilson (1888) to be even more complicated than the work of Auer von Welsbach would seem to indicate, and to contain no fewer than eight elementary substances. As yet, however, no confirmation of this surmise has been obtained.

The chemistry of the rare earths has of late years been greatly extended owing to the employment of certain of the members of the group in the manufacture of the “mantles” used in gas-lighting, and which consist substantially of thoria, mixed with about one per cent. of ceria. Large quantities of monazite, thorianite, thorite, cerite, and other minerals, are now worked up for the sake of the thoria and ceria they contain, and considerable amounts of residual products, consisting largely of other members of the family, are now available for investigation. It is reasonably certain, therefore, that our knowledge of this section of inorganic chemistry will be largely augmented in the immediate future. Indeed, the application of thoria to the construction of gas-mantles may be said to have removed that substance from the category of the rare elements. No sooner was it discovered that it was capable of useful application than unexpected sources of supply were found.

The same result has followed in other cases. One of the most significant developments of modern chemistry is seen in the efforts which are constantly being made to turn the so-called rare elements to useful account; and when they are found to be technically valuable it is generally observed that hitherto unknown sources of supply are soon available. Cerium salts have been found to be useful in the colouring of glass and porcelain, as mordants in dyeing, in photography, and in medicine. Zirconium has been used in incandescent electric lighting, and thallium has been employed in the manufacture of highly refractive optical glass. Titanium, molybdenum, and vanadium are used in the manufacture of steel of high tensile strength. Tantalum and tungsten are employed in the construction of filaments in incandescent electric lighting. Tantalum, indeed, has been found to occur in considerable quantities, and to be more largely distributed than was hitherto supposed. Alloys of tungsten and aluminium are used in automobile construction, and alloys of tungsten, aluminium, and copper in the manufacture of propeller blades. Tungsten steel is used in armour plates, and to stiffen the springs of cars; in the manufacture of piano-wire, and to increase the permanency of magnets. Even the rarer metals of the platinum group are finding many important applications. Osmium-iridium is used for the bearings of compasses, for the tips of gold pens, and in the construction of standard weights. Osmium and ruthenium enter into the composition of filaments for electric lighting. The extraordinary influence of light on the electric conductivity of selenium has been made use of in the transmission of photographs by telegraph and telephone wires, and for measuring the light intensity of the Röntgen rays in clinical work.


CHAPTER III
The Inactive Elements: Radium and Radio-Activity

Argon, helium, krypton, neon, and xenon belong to the group of the so-called inactive elements, and constitute what are known as the rare gases of the atmosphere. The existence of these bodies is of great theoretical value and few discoveries of recent times have exacted more interest and curiosity. Twenty years ago it was generally assumed that practically all that was to be known concerning the composition of atmospheric air had been ascertained. Priestley and Cavendish had recognised that it was mainly composed of oxygen and nitrogen, and Cavendish had definitely stated that these gases are present in practically constant proportion, independent of season, climate, or locality. Thénard, Saussure, and others, had determined the limits of variation in the amount of carbon dioxide. Bunsen and Regnault had established that the quantities of oxygen and nitrogen are subject to slight alteration, the extent of which could be readily determined by the exact eudiometric processes they had devised. Lastly, it was proved beyond a doubt that the gases of the atmosphere are simply mechanically mixed, and can be separated by a variety of physical methods. In fact, of no single subject could it be more confidently assumed that finality of knowledge had apparently been reached.

In 1892, in the course of a series of determinations of the densities of the common gases, Lord Rayleigh found that the density of nitrogen obtained from the air was slightly greater than the density of that gas prepared by the decomposition of ammonia and of nitric acid, the difference in weight being about 1 part in 200—an amount far greater than could be accounted for by errors of weighing. Various suppositions were made in explanation of the discrepancy; but these, when tested, were found not to account for the facts. By heating the atmospheric nitrogen with metallic magnesium, whereby the greater portion of the gas is absorbed to form the nitride, Sir William Ramsay found that the density of the residual gas was still further increased, which rendered it probable that the relatively high density of atmospheric nitrogen as compared with that derived from ammonia, and, as Lord Rayleigh found, from other sources also, was due to the presence of a gaseous substance in the air of considerably greater density than nitrogen or oxygen. Lord Rayleigh also subjected atmospheric nitrogen mixed with oxygen to the electric discharge over a solution of caustic soda, in a manner similar to that already employed by Cavendish, and found also that the residual gas was considerably increased in density. At the Oxford meeting of the British Association in August, 1894, the two investigators were in a position to announce that the discrepancy was actually due to the presence of a hitherto unknown gaseous constituent of atmospheric air, considerably more soluble in water than nitrogen, and to which, on account of its chemical inertness, the name of argon (ἀργον, idle) was given. By a special apparatus devised by Lord Rayleigh, in which a mixture of air and oxygen is submitted to an electric flame produced by a powerful, rapidly alternating current, considerable quantities of argon were separated from the air. It has also been found that by the use of metallic calcium or a mixture of magnesium and lime, the atmospheric nitrogen is absorbed at a lower temperature, and more rapidly than by magnesium alone.

Argon has been found to exist in the gases from springs and mineral waters, notably in those of Bath, Cauterets, Wildbad, and Harrogate. It has also been found in a meteorite, in the gas occluded in rock-salt, and in the minerals malacone, uraninite, brōggerite, etc. No animal or vegetable substance appears to contain it. It is present in atmospheric air to the extent of about one per cent. by volume. It is a colourless gas of an atomic weight of 39.9: one litre of it at the standard temperature and pressure weighs 1.7815 grams. Experiments made by the method of Kundt and Warburg—i.e., by determining the ratio of the specific heats at constant pressure and constant volume by the velocity of sound in the gas—prove that argon, like mercury gas, is monatomic. This of itself indicates that argon is an element, since a monatomic compound is a contradiction in terms. The calculations from the experimental data presuppose that argon obeys the laws of Boyle and Dalton, which was found on trial to be the case. By the application of cold and pressure argon can be liquefied. The liquid boils at -186°.1 and freezes at -187°.9. The spectrum of the gas is exceedingly complicated, consisting of a great number of lines extending throughout the visible portion and far into the extreme red and ultra-violet. The colour of the light emitted on sparking the gas changes with increase of temperature from a brilliant red to a bright blue—depending on the intensity of the discharge. All attempts to induce argon to enter into combination with other substances have failed. The methods of its preparation show that it does not combine with oxygen, although Troost and Ouvrard state that it unites with magnesium vapour. It forms no compounds with hydrogen, chlorine, phosphorus, sulphur, sodium, tellurium, etc. Even fluorine, probably the most generally active of the chemical elements, shows no tendency to unite with it.

In 1888 Dr. Hillebrand, of the U.S. Geological Survey, in examining a form of uraninite known as cleveite, so named from the late Professor Cleve, found that on treatment with dilute sulphuric acid it gave off considerable quantities of a gas which was assumed to consist only of nitrogen, as it gave the spectroscopic reactions of that element. To test whether this gas contained argon, Ramsay, in 1895, further examined it spectroscopically. After sparking it with oxygen in the presence of caustic soda solution, in the way already described, it gave no indications of argon. The main characteristic of its spectrum was a bright yellow line, known as D3, not coincident with that afforded by sodium, but identical in position with a line detected in the chromosphere during the solar eclipse of 1868, which line, on examination by Frankland and Lockyer, could not be ascribed to any known element. For this supposed new element the name helium, from ἥλιος, the sun, had been suggested. This was the first occasion on which an element observed originally only in the sun was found to occur also on the earth. The presence of the new element in the gas from cleveite was subsequently confirmed by Langlet working in Cleve’s laboratory.