The appearance of this monumental work, which will ever remain one of the classics of chemistry, created a great impression. Its effect persists to this day. It constituted a model and furnished a standard which each successive worker has striven to emulate, with the result that atomic weights to-day are among the best ascertained of physical constants.

Space will not permit of any detailed account of the work done in connection with atomic weights during the forty-five years which have elapsed since the publication of Stas’s memoirs; and the reader who desires fuller information must be referred to the special treatises on the subject, such as the Constants of Nature of F. W. Clarke, or the monographs of Meyer and Seubert, Becker, Sebelien, and Van der Plaats.

Reference, however, must be made to the determinations by Lord Rayleigh, Leduc, Morley, Noyes, Guye, Dixon, and Edgar of values which, like those of oxygen, hydrogen, nitrogen, silver, and the halogens, are largely made use of as fiduciary values in atomic-weight work.

Lastly, it should be mentioned, the re-determination of the atomic weights of the elements with the highest attainable precision and by the most refined and most modern methods has for some years past been a special feature of the work of the Harvard Laboratory, under the direction of Theodore Richards; and some of the most trustworthy and best established values we possess have been ascertained by him and his pupils. Atomic weights are of such fundamental importance that the various nations interested in the pursuit of chemistry have consented to the establishment of an International Committee, which will take cognisance of the work done from time to time in this department of operative chemistry, examine and assess its value, and draw up an annual report on the subject.

Despite the accumulated testimony of this work in relation to the validity of the law of the conservation of mass, the sufficiency of the evidence has now and again been impugned. This aspect of the matter has within recent years been directly investigated by Landolt; and as the result of a painstaking series of experiments, in which every recognised source of error was removed or allowed for, it would appear that there is absolutely no ground for the belief that there is any dissipation of mass in the course of, or as the result of, a chemical change.


CHAPTER V
The Molecular Theory of Gases

The more obvious physical phenomena of gases were, of course, well known by the middle of the nineteenth century; and the so-called gaseous laws—the laws of Boyle, Dalton, and Gay Lussac—were universally accepted by chemists and physicists at that time as fundamental. That the first two laws were only approximations to truth in a mathematical sense was also well known; and the experimental labours of Regnault and Magnus had not only established limits within which they were inexact, but had, to some extent, indicated the cause of their departure from the ideal condition. The hypothesis of Avogadro, as already stated, was practically ignored at this period, or at least its value was unappreciated until the time of Gerhardt and Laurent, and more particularly Cannizzaro, who in 1858 pointed out its real meaning and made it the keystone in the edifice of modern chemistry.

One of the most significant achievements of the last half-century has been the demonstration that these gaseous laws are interdependent. Their further study, and in particular the study of their variation from exact mathematical expression, has led to a conception of the real nature of a gas which not only comprehends and knits together these laws, but affords a rational explanation of them. If the laws of Boyle and Dalton concerning the relations between pressure, temperature, and gaseous volume are, and must be from the very nature of the case, only approximations, it follows that the same is equally true of the laws of Gay Lussac and Avogadro, since these are dependent on the others. The definite experimental proof that gases do not actually combine in the precise ratios demanded by the law of Gay Lussac has been forthcoming only during the last twenty years. It has been found that, instead of oxygen and hydrogen combining in the exact ratio of one volume of oxygen to two volumes of hydrogen to form water, as stated by Gay Lussac, one volume of oxygen combines with, according to Scott, 2.00245 vols.; according to Leduc, 2.0024 vols.; according to Morley, 2.00268 vols. of hydrogen. What is true of the volume-ratios in which oxygen and hydrogen are actually found to combine, under ordinary conditions, is no doubt equally true of analogous instances, such as the union of hydrogen and chlorine to form hydrogen chloride. It follows also that the extent of the variation from the mathematical expression of Gay Lussac’s law must get smaller and smaller as the combining gases approach the condition of the ideal gas—as they do, for example, under very low pressures. The precise degree of departure from Gay Lussac’s law is therefore in a sense accidental, and is dependent upon the conditions under which combination takes place.

The more exact study of the physical phenomena of gases, and in particular the clearer recognition of the causes which determine the extent of their departure from the ideal gaseous laws, have afforded valuable assistance in ascertaining the atomic weights of certain elements independently of chemical considerations. The processes of physical measurement have been so refined within recent years that physical methods of arriving at molecular—and, inferentially, at atomic—weights, in the case of all elements and compounds which can be brought into a condition approaching that of the ideal gas, are to be preferred to the gravimetric methods of analysis or synthesis as affording the most probable values of the true atomic weights of the elements. The work of Lord Rayleigh, Leduc, and of Guye and his pupils on the densities of the gases has furnished us with a series of values for the atomic weights of a number of the elements which, in point of accuracy, are as superior to the values of Stas as the values of Stas were superior to those of his predecessors. Daniel Berthelot pointed out in 1898 that the true molecular weight of a gas can be deduced from its density and its observed variations from Boyle’s law under atmospheric pressure and at very low pressures. Incidentally, the study of gaseous phenomena has served to place the theory of atoms upon a far more stable foundation than it occupied half a century ago. How halting was the adhesion which even some of the most eminent chemists then gave to this theory was well exemplified by the remarkable lecture given before the Chemical Society of London in 1869, in which Williamson—one of the most sturdy champions of Dalton’s doctrine—set forth its true value.