Kekulé was of opinion that the valency, or affinity-value, of an element was a definite and invariable quantity—a fundamental property of the atom as immutable as its atomic weight. Many facts appear to show that such is not the case. Thus phosphorus and nitrogen are sometimes trivalent and at other times pentavalent; tin, in certain of its compounds, is divalent; in others, tetravalent. Sulphur may be a dyad, a tetrad, or a hexad. It will be seen that the valency of these particular elements varies by two units: this was at one time held to be a natural law, and the various elements were divided by Frankland into the two main groups of (1) perissads, or elements of odd atomic value, and (2) artiads, or elements of even atomic value. Experience has demonstrated that a rigid classification on this basis is not possible. Many instances are known of elements not only varying in valency by two units, but even by one unit. Thus nitrogen, which is usually a perissad, is apparently an artiad in nitric oxide and in gaseous nitrogen peroxide. Roscoe has shown that uranium and tungsten, originally regarded as artiads, form pentachlorides.

To what the difference in the affinity-value of an element is due, and why different elements should manifest different values, is at present unknown. Valency, like other properties, appears to be a periodic function of atomic weight; from the behaviour of such analogous compounds as phosphorus pentafluoride, phosphorus pentachloride, phosphorus pentabromide, it seems, too, to be related to the weights of the atoms in combination. Further, it would appear that the mutual affinities of substances vary with temperature—i.e., with the energy imparted to their molecules; numerous instances appear to indicate that the atom-fixing power of an element decreases when it is strongly heated—that is, when the internal energy imparted to its combinations exceeds a certain limiting value. Van ’t Hoff has attempted a mechanical explanation of valency depending on the shape of the atoms, as affected by variation in their vibratory motions resulting from differences of temperature. Helmholtz suggested that the different charges of electricity associated with the atoms may determine their affinity-values—that, for example, a monad carries a single charge, a dyad two, a triad three charges. Many considerations go to show that the affinity-value of an element is not capable of definite numerical expression in the sense which the doctrine of valency as generally understood implies, and that the variations are not of the per saltum character assumed by saying that the affinity-value is sometimes 1, sometimes 2, at other times 3, and so on. When we have apparently satisfied the accepted atomic value of an element by allocating to it what we regard as the necessary complement of atoms of other bodies, it is frequently evident that the capacity for combination of the whole molecule is not satisfied. Many apparently saturated molecules have the power of combining with other equally saturated molecules. Sulphur trioxide (SO3) and barium monoxide (BaO) would appear each to have their affinity-values satisfied; nevertheless they combine with great readiness to form barium sulphate, BaSO4.


CHAPTER VIII
The Chemistry of Aromatic Compounds

The suggestions of Couper and Kekulé that an explanation of the properties of chemical compounds should be sought in the nature and mutual affinities of their constituent elements rather than of their radicals were not wholly accepted at the time they were first made. Speculative ideas have to justify themselves by facts. The value of an hypothesis depends upon its usefulness and expediency, and on its power of indicating the lines of future inquiry. How far it is inductively sound and deductively useful is a matter for individual judgment. Consequently the tendency to pass from purely rational and constitutional formulæ to formulæ which sought to symbolise the inner structure—the very skeleton, as it were—of a molecule, was resisted for a time, and by no one more strongly than by Kolbe.

Kolbe’s attitude to the new doctrine may be said to have had its justification in his own work. His remarkable prediction, based on considerations which had nothing in common with Kekulé’s doctrine, of the existence of the secondary and tertiary alcohols, so soon to be confirmed by Friedel’s discovery of secondary propyl alcohol, and by Butlerow’s isolation of tertiary butyl alcohol, served to retard the general adoption of Kekulé’s views by showing that apparently they were no more fruitful in suggestiveness than those they were intended to supplant. But it was exactly in their suggestiveness with regard to the development of isomerism that structural formulæ based upon valency were gradually found to be most useful. It was perceived that it was now possible not only to foretell the existence of isomers, but to determine their number, and to some extent to forecast their properties and modes of decomposition. Cayley, for example, calculated the number of possible isomers of the hydrocarbons of the generic formula CnH2n+2 up to C6H14 all those that theory predicted have been discovered. In no single case have more been obtained than the number indicated by theory. The accumulated weight of this and similar testimony ultimately established the doctrine of chemical structure on a firm basis.

This conception received a great extension as the result of Kekulé’s application of his ideas to the explanation of the chemical constitution of the group of substances of vegetable origin—consisting of essential oils, balsams, resins, and their products, which, on account of their characteristic odours, were collectively known to the older chemists as the aromatic compounds. Some of these, like oil of bitter almonds, gum benzoin, coumarin, oil of wintergreen, oil of anise, oil of cinnamon, oil of cumin, balsam of tolu, phenol, and certain of their derivatives, such as benzene, aniline, salicylic acid, cinnamic acid, toluene, cymene, had already been investigated with important theoretical results; but as a class they had received far less attention than the derivatives of the great group of homologous radicals of which methyl is the initial member. Of course it was part of the doctrine of Liebig—the discoverer of benzoyl—that the aromatic compounds also contained specific radicals; but the relation of these compounds to those we now call aliphatic (fatty) compounds was not understood, although certain analogies were recognised.

In 1866 Kekulé drew attention to the following significant peculiarities of the aromatic compounds: (1) All aromatic compounds, even the simplest, are comparatively richer in carbon than the corresponding class of fatty (aliphatic) compounds; (2) among the aromatic substances, as among fatty compounds, numerous homologous compounds exist; (3) the simplest aromatic substances contain at least six atoms of carbon; (4) all decomposition products of aromatic substances show a certain family resemblance; the main product of the decomposition contains at least six atoms of carbon—e.g., benzene C6H6, phenol C6H6O, etc., which would seem to indicate that all aromatic substances contain a nucleus or atomic grouping containing six carbon atoms. Within this nucleus the carbon atoms are in closer connection or denser combination, from which it follows that all aromatic compounds are comparatively rich in carbon. More carbon atoms can then be added to this nucleus according to the same laws that govern the fatty compounds. In this way the existence of homologous compounds may be explained.

On the assumption that carbon is tetravalent and that its valency is constant, Kekulé showed how, by linking together six carbon atoms by alternate single and double bonds, six affinity units may be left free. If we assume that six carbon atoms are attached to one another according to this law of symmetry, we obtain a group which, regarded as an open chain, contains eight unsaturated units of affinity: