Determinations of molecular freezing-point depressions by Raoult and others showed that certain substances exerted only about half the osmotic pressure calculated from their known formulæ, whereas others have abnormally high osmotic pressures. The explanation of the discrepancies in the latter case was given in 1887 by Arrhenius, who pointed out that only those solutions which have abnormally high osmotic pressures are electrically conductive. This pregnant observation proved to be very fruitful in suggestiveness; and the connection between conductivity and Van ’t Hoff’s theory of solution was developed by Arrhenius into the doctrine of electrolytic dissociation or ionisation—one of the most important consequences of Faraday’s electrolytic laws, the work of Hittorf, and the kinetic conceptions of Williamson and Clausius to which the last quarter of a century has given rise. Arrhenius showed that not only were free ions present in an electrically conductive solution before electrolysis, as maintained by Clausius, but that the proportion of molecules dissociated into ions could be calculated from measurements of electrical conductivity, as well as from measurements of osmotic pressure. Both methods give concordant results—a strong confirmation of the validity of the theory. In a solution of common salt, containing a gramme equivalent of that substance in a litre, Arrhenius calculated that only about three tenths of the salt exists as NaCl, the remaining seven tenths being resolved into independent ions of chlorine (chloridion) and sodium (sodion): NaCl⇄[Na·] + Cl´, each moving freely in all directions, like gaseous molecules. On passing the current, electrodes placed in the solution exert a directive action on the free ions, these alone being concerned in determining the conductivity, the un-ionised molecules or the solvent itself exercising no influence. Methods of determining the migration velocity of the ions have been worked out by Hittorf, Kohlrausch, Lodge, and others.

Svante August Arrhenius.

The theory of ionisation affords a satisfactory explanation of many chemical phenomena. It accounts for the characteristic properties of acids, and explains why different acids have varying “strengths” and why a “weak” acid has the same “strength” as the “strong” acid at high equivalent dilutions: in each case the acid is nearly completely ionised—in other words, the “strength” of an acid depends on the concentration of its hydrogen ions. So, too, the “strength” of a base is related to the number of its hydroxyl ions. Aqueous ammonia is relatively a “weak” base—its solution contains few hydroxyl ions. On the other hand, caustic potash is a “strong” base—its solution, on moderate dilution, is almost completely ionised: KOH = K· + OH´, the positive ion being represented by one or more dots, and the negative ion by one or more dashes. The theory accounts, too, for many phenomena in analytical chemistry—such as why magnesia is precipitated by ammonia only in the absence of ammonium chloride, and why sulphuretted hydrogen throws down zinc sulphide in the absence of hydrochloric acid. It also serves to explain many thermo-chemical facts observed by Hess, Thomsen, and others, such as the fact that the heat of neutralisation of the “strong” acids and bases is independent of their nature, and has the uniform value of 13,700 calories, in agreement with the value, as calculated by Van ’t Hoff, for the reaction H· + OH´ = H2O, deduced from Kohlrausch’s measurements of the conductivity of water at varying temperatures.

Certain phenomena relative to the effect of concentration (mass action) in determining chemical change—many of which have been studied by Ostwald and his pupils, as, for example, why two dilute solutions can be mixed together without thermal disturbance; numerous hydrolytic actions; the alkalinity and acidity of salts on solution; the behaviour of the “indicators” in analysis; such phenomena as the precipitability of common salt in aqueous solution by hydrogen chloride; the influence of an excess of a precipitant; the varying behaviour of reagents; the varying colour of salt solutions; the reason why water is formed in so many reactions; why a potential difference occurs at the surface of two electrolytic solutions, etc.—phenomena for the most part otherwise unintelligible, are all capable of explanation by means of it.

Although, in the above statement, we have been mainly concerned with aqueous solutions, it should be said that the theory of ionisation is applicable to other solvents, organic and inorganic. Moreover, it should be added, the theory has not been universally accepted as accounting for all the phenomena of solution. Many substances form definite hydrates which can be isolated, and it is a moot point whether such hydrates are capable of existing in aqueous solution, as contended by Mendeléeff, Pickering, Kahlenberg, Armstrong, and others. Such hydrates are, however, unstable compounds, affected by temperature changes, and dissociable on dilution in accordance with the law of concentration (mass action). Further, there is evidence, largely based on the work of Kohlrausch, H. C. Jones, and Lowry, to show that the ions in aqueous solutions of electrolytes are themselves hydrated.

Limitations of space preclude further attempts to deal with the development of physical chemistry during the last half-century, and many important matters must remain practically unnoticed.

The subject of thermo-chemistry is mainly the creation of the last half-century, elaborated by the labours of Hess, Andrews, Thomsen, Favre and Silbermann, and Berthelot. The work of Wenzel and Berthollet on the influence of molecular concentration on chemical change has been greatly extended by Berthelot, Guldberg and Waage, Julius Thomsen, Van ’t Hoff, Harcourt and Esson, and Le Chatelier; and the theory of mass action and the nature of reversible processes are now capable of definite expression, and can be proved independently by thermo-dynamical and kinetic reasoning. The phenomena of catalysis and the action of enzymes and of fermentation in general have received attention from many investigators. The phenomena of gaseous transpiration have been studied by Graham, Maxwell, and O. E. Meyer. Thermal dissociation has been experimentally observed by Deville, Troost, and others, and mathematically investigated by Willard Gibbs and Van der Waals; and its analogy to electrolytic dissociation has been established. The nature of gaseous explosions has been investigated by Berthelot, Le Chatelier, Abel, and Dixon. Important work has been done by Gladstone, Lorentz, Landolt, Nasini, Brühl, and others, on the connection between the nature and constitution of substances and their optical characters. Similar work has been done by Sir William Perkin as regards their magnetic rotation, and by Thorpe and Rodger with reference to their viscosity. The theory of phases, originating with Gibbs and developed by Van der Waals and Roozeboom, has been greatly extended. Sir J. J. Thomson and Sir J. Larmor have elaborated an electrical theory of the atom. Barlow and Pope have traced the relation between valency and volume, and the accurate measurements of Groth and of Tutton have extended our knowledge of the crystallographic relations of correlated substances.

Lastly, the whole subject of photo-chemistry, although originating with the observations of Ingenhousz, Scheele, and Senebier, may be said to have been studied only within our own time, notably by Bunsen and Roscoe, Pringsheim, Pfeffer, Vogel, and Abney.