CHAPTER I
State of Chemistry in the Middle of the Nineteenth Century

In the preceding volume an attempt was made to outline the significant features in the development of chemistry, as an art and as a science, from the earliest times down to about the middle of the last century. Since that time chemistry has progressed at a rate and to an extent unparalleled at any period of its history. Not only have the number and variety of chemical products—inorganic and organic—been enormously increased, but the study of their modes of origin, properties, and relations has greatly extended our means of gaining an insight into the internal structure and constitution of bodies. This extraordinary development has carried the science beyond the limits of its own special field of inquiry, and has influenced every department of natural knowledge. Concurrently there has been a no less striking extension of its applications to the prosperity and material welfare of mankind.

With the death of Davy the era of brilliant discovery in chemistry, wrote Edward Turner, appeared for the moment to have terminated. Although the number of workers in the science steadily increased, the output of chemical literature in England actually diminished for some years; and, as regards inorganic chemistry, few first-rate discoveries were made during the two decades prior to 1850. Chemists seemed to be of Turner’s opinion that the time had arrived for reviewing their stock of information, and for submitting the principal facts and fundamental doctrines to the severest scrutiny. Their activity was employed not so much in searching for new compounds or new elements as in examining those already discovered. The foundations of the atomic theory were being securely laid. The ratios in which the elements of known compounds are united were being more exactly ascertained. The efforts of workers, Graham excepted, seemed to be spent more on points of detail, on the filling-in of little gaps in the chemical structure, as it then existed, than in attempts at new developments. For a time—during the early ’thirties—chemists struggled with the claims of rival methods of notation, and it was only gradually that the system of Berzelius gained general acceptance. At none of the British universities was there anything in the nature of practical tuition in chemistry. Thomson, at Glasgow, occasionally permitted a student to work under him, but no systematic instruction was ever attempted. The first impulses came from Graham in 1837, when he took charge of the chemical teaching at the University of London, and when, in 1841, he assisted to create the Chemical Society of London. Four years later the Royal College of Chemistry in London was founded and placed under the direction of August Wilhelm Hofmann—one of the most distinguished pupils of Liebig. Under his inspiration the study of practical chemistry made extraordinary progress, and discovery succeeded discovery in rapid succession. In bringing Hofmann to England we had, in fact, imported something of the spirit and power of his master, Liebig.

Among the pupils and co-workers of Hofmann were Warren de la Rue, Abel, Nicholson, Mansfield, Medlock, Crookes, Church, Griess, Martius, Sell, Divers, and Perkin. Whilst at Giessen he had begun the study of the organic bases in coal-tar with a view more especially of establishing the identity of Fritzsche’s anilin with the benzidam of Zinin and the krystallin of Unverdorben. Hofmann continued to cultivate with unremitting zeal the field thus entered. With Muspratt he discovered paratoluidine and nitraniline; with Cahours allyl alcohol. His pupil Mansfield worked out, at the cost of his life, the methods for the technical extraction of benzene and toluene from coal-tar, and thereby made the coal-tar colour-industry possible. It was in attempting to synthesise quinine by the oxidation of aniline that Perkin, then an assistant at the college, obtained, in 1856, aniline purple, or mauve, as it came to be called by the French, the first of the so-called coal-tar colouring matters. In 1859 this was followed by the discovery of magenta, or fuchsine, by Verquin. For its manufacture Medlock, one of Hofmann’s pupils, in 1860 devised a process by which for a time it was almost exclusively made. Hofmann studied the products thus obtained, and showed that they were derivatives of a base he called rosaniline; and he demonstrated that the colouring matters were only produced through the concurrent presence of aniline and toluidine. He also proved that the base of the dye, known as aniline blue, was triphenylrosaniline. As the result of these inquiries he obtained the violet or purple colouring matters known by his name. Lastly, all his classical work on the amines, ammonium compounds, and the analogous phosphorus derivatives was done at the Royal College of Chemistry.

Prior to the establishment by Liebig, in 1826, of the Giessen laboratory, the state of chemistry in Germany was not much, if at all, better than with us. The creation of the Giessen school initiated a movement which has culminated in the pre-eminent position which Germany now occupies in the chemical world. Students from every civilised country came to study and to work under its leader, and to carry away with them the influence of his example, the inspiration of his genius, and the stimulating power of his enthusiasm.

Justus von Liebig, was born at Darmstadt on May 12, 1803, and after graduating at Erlangen, where he worked on the fulminates, he repaired to Paris and entered the laboratory of Gay Lussac, with whom he continued his inquiries. Returning to Germany, he was appointed Professor of Chemistry at Giessen in 1826, and began those remarkable series of scientific contributions upon which the superstructure of organic chemistry largely rests. He investigated the cyanates, cyanides, ferrocyanides, thiocyanates, and their derivatives. In conjunction with Wöhler he discovered the group of the benzoic compounds and created the radical theory. With Wöhler also he investigated uric acid and its derivatives. He discovered hippuric acid, fulminuric acid, chloral, chloroform, aldehyde, thialdine, benzil, and elucidated the constitution of the organic acids and the amides. He greatly improved the methods of organic analysis, and was thereby enabled to determine the empirical formulæ of a number of carbon compounds of which the composition was imperfectly known. He practically laid the foundations of modern agricultural chemistry, and to his teaching is due the establishment of an important branch of technology—the manufacture of chemical fertilisers. He worked on physiological chemistry, especially on the elaboration of fat, on the nature of blood, bile, and on the juice of flesh. He studied the processes of fermentation, and of the decay of organised matter. He was a most prolific writer. The Royal Society’s Catalogue of Scientific Papers enumerates no fewer than 317 contributions from his pen. He was the founder of the Annalen der Chemie, which is now associated with his name, and of the Jahresbericht; he published an Encyclopædia of Pure and Applied Chemistry and a Handbook of Organic Chemistry. His Familiar Letters on Chemistry was translated into every modern language, and exercised a powerful influence in developing popular appreciation of the value and utility of science. Liebig left Giessen in 1852 to become Professor of Chemistry at the University of Munich and President of the Academy of Sciences. He died at Munich on April 18, 1874.

With the name of Liebig that of Wöhler is indissolubly connected. Although the greater part of their work was not published in conjunction, what they did together exercised a profound influence on the development of chemical theory.

Friedrich Wöhler was born at Eschersheim, near Frankfort, on July 31, 1800. After studying at Marburg, where he discovered, independently of Davy, cyanogen iodide, and worked on mercuric thiocyanate, he went to Heidelberg and investigated cyanic acid and its compounds, under the direction of Gmelin. In 1823 he worked with Berzelius at Stockholm, where he prepared some new tungsten compounds and practised mineral analysis. In 1825 he became a teacher of chemistry in the Berlin Trade School. Here he succeeded for the first time in preparing the metal aluminium and in effecting the synthesis of urea—one of the first organic compounds to be prepared from inorganic materials. Jointly with Liebig he worked upon mellitic and cyanic and cyanuric acids. In 1832 Wöhler, now appointed to the Polytechnic at Cassel, began with Liebig their memorable investigation on bitter-almond oil. In 1836 he was called to the Chair of Chemistry in the University of Göttingen, and with Liebig attacked the constitution of uric acid and its derivatives—the last great investigation the friends did in common. Wöhler subsequently devoted himself mainly to inorganic chemistry. He isolated crystalline boron, and prepared its nitrides, discovered the spontaneously inflammable silicon hydride, titanium nitride, and analysed great numbers of minerals and meteorites and compounds of the rarer metals. He made Göttingen famous as a school of chemistry. At the time of the one and twentieth year of his connection with the University it was found that upwards of 8000 students had listened to his lectures or worked in his laboratory. He died on September 23, 1882.

In France, Dumas exercised a no less powerful influence. If Liebig could reckon among his pupils Redtenbacher, Bromeis, Varrentrapp, Gregory, Playfair, Williamson, Gilbert, Brodie, Anderson, Gladstone, Hofmann, Will, and Fresenius; Dumas could point to Boullay, Piria, Stas, Melsens, Wurtz, and Leblanc—all of whom did yeoman service in developing the rapidly expanding branch of organic chemistry.