In Europe geological phenomena do not appear to have attracted serious attention till the sixteenth century, when the significance of fossils became the subject of an animated controversy in Italy. At that epoch this country held the front rank in learning and the arts, and an inquiry of that nature arose almost as a matter of course, because the marls, sands, and soft limestones of its lower districts teem in many places with shells and other marine organisms in a singular state of perfection and preservation. It is interesting to remark, that among the foremost in appealing to inductive processes for the explanation of these enigmas was that extraordinary and almost universal genius, Leonardo da Vinci. He ridiculed the current idea that these shells were formed "by the influence of the stars," calling attention to the mud by which they were filled, and the gravel beds among which they were intercalated, as proof that they had once lain upon the bed of the sea at no great distance from the coast. His induction rested on the evidence of sections which had been exposed during his construction of certain navigable canals in the north of Italy. Shortly afterward, the conclusions of Leonardo were amplified, and strengthened on similar grounds by Frascatoro. He, however, not only demonstrated the absurdity of explaining these organic structures by the "plastic force of Nature"—a favourite refuge for the intellectually destitute of that and even a later age, but he also showed that they could not even be relics of the Noachian deluge. "That inundation, he observed, was too transient; it had consisted principally of fluviatile waters; and if it had transported shells to great distances, must have strewed them over the surface, not buried them at vast depths in the interior of mountains." As Lyell truly remarks, "His clear exposition of the evidence would have terminated the discussion for ever, if the passions of man had not been enlisted in the dispute; and even though doubts should for a time have remained in some minds, they would speedily have been removed by the fresh information obtained almost immediately afterwards, respecting the structure of fossil remains, and of their living analogues." But the difficulties raised by theologians, and the general preference for deductive over inductive reasoning, greatly impeded progress. It was not till the methods of the schoolmen yielded place to those of the natural philosophers that the tide of battle began to turn, and science to possess the domains from which she had been unjustly excluded. For about a century the weary war went on; the philosophers of Italy leading the van, those of England, it must be admitted, for long lagging behind them, before the spectre of "plastic force" was finally dismissed to the limbo of exploded hypotheses in England. For instance, it was seriously maintained by the well-known writer on county history, Dr. Plot, in the last quarter of the seventeenth century, though its absurdity had been demonstrated by his Italian contemporaries; as by Scilla, in his treatise on the fossils of Calabria, and by Steno, in that on "Gems, crystals, and organic petrifactions enclosed in solid rocks." The latter had proved by dissecting a shark recently captured in the Mediterranean, that its teeth and bones corresponded exactly with similar objects from a fossil in Tuscany, and that the shells discovered in sundry Italian strata were identical with living species, except for the loss of their animal gluten and some slight mineral change. Moreover, he had distinguished, by means of their organic remains, between deposits of a marine and of a fluviatile character.

But now, as the "plastic force" dogma lost its hold on the minds of men, its place was taken by that which regarded all fossils as the relics of an universal deluge.

"The theologians who now entered the field in Italy, Germany, France, and England, were innumerable; and henceforward, they who refused to subscribe to the position that all marine organic remains were proofs of the Mosaic deluge, were exposed to the imputation of disbelieving the whole of the sacred writings. Scarce any step had been made in approximating to sound theories since the time of Frascatoro, more than a hundred years having been lost in writing down the dogma that organised fossils were mere sports of Nature. An additional period of a century and a half was now destined to be consumed in exploding the hypothesis that organised fossils had all been buried in the solid strata by Noah's flood."[58]

Into the varying fortunes of this second struggle it is needless to enter at any length. It was the old conflict between theology and science in a yet more acute form; the old warfare between deductive and inductive reasoning; between dogmatic ignorance and an honest search for truth. Protestants and Romanists alike seemed to claim the gift of infallibility, with the right to decide ex cathedrâ on questions of which they were profoundly ignorant, and to pronounce sentence in causes where they could not even appreciate the evidence. Ecclesiastics scolded; well-meaning though incompetent laymen echoed their cry; the more timorous among scientific men wasted their time in devising elaborate but futile schemes of accommodation between the discoveries of geology and the supposed revelations of the Scriptures; the stronger laboured on patiently, gathering evidence, strengthening their arguments and dissecting the fallacies by which they were assailed, until the popular prejudice should be allayed and men be calm enough to listen to the voice of truth. It was a long and weary struggle, which is now nearly, though not quite, ended; for there are still a few who mistake for an impregnable rock that which is merely the shifting-sand of popular opinion, and cannot realise that the province of revelation is in the spiritual rather than in the material, in the moral rather than in the scientific order. The outbursts of denunciation aroused by the assertion of the antiquity of man and the publication of the "Origin of Species," which many still in the full vigour of their powers can well remember, were but a recrudescence of the same spirit, a reappearance of an old foe with a new face.

But when Lyell was young and the idea of the "Principles" began to germinate in his mind, popular prejudice against the free exercise of inquiry in geology was still strong; this diluvial hypothesis still hampered, if it did not fully satisfy, the majority of scientific workers. Here and there, it is true, some isolated pioneer demonstrated the impossibility of referring the fossil contents of the earth's crust to a single deluge, or protested against the singular mixture of actual observation, patristic quotation, and deductive reasoning which commonly passed current for geological science. Chief and earliest among these men, Vallisneri, also an Italian, about a century before Lyell's birth, was clearsighted enough to see "how much the interests of religion as well as those of sound philosophy had suffered by perpetually mixing up the sacred writings with questions in physical science"; indeed, he was so far advanced as to attempt a general sketch of the marine deposits of Italy, with their organic remains, and to arrive at the conclusion that the ocean formerly had extended over the whole earth and after remaining there for a long time had gradually subsided. This conclusion, though inadequate as an expression of the truth, was much more philosophical than that of an universal and comparatively recent deluge. Moro and Generelli, in the same country, followed the lead of Vallisneri, in seeking for hypotheses which were consistent with the facts of Nature, Generelli even arriving at conclusions which, in effect, were those adopted by Lyell, and have been thus translated by him:

"Is it possible that this waste should have continued for six thousand and perhaps a greater number of years, and that the mountains should remain so great unless their ruins have been repaired? Is it credible that the Author of Nature should have founded the world upon such laws as that the dry land should be for ever growing smaller, and at last become wholly submerged beneath the waters? Is it credible that, amid so many created things, the mountains alone should daily diminish in number and bulk, without there being any repair of their losses? This would be contrary to that order of Providence which is seen to reign in all other things in the universe. Wherefore I deem it just to conclude that the same cause which, in the beginning of time, raised mountains from the abyss, has down to the present day continued to produce others, in order to restore from time to time, the losses of all such as sink down in different places, or are rent asunder, or in other ways suffer disintegration. If this be admitted, we can easily understand why there should now be found upon many mountains so great a number of crustacea and other marine animals."

This attempt at a system of rational geology was a great advance in the right direction, though many gaps still remained to be filled up and some errors to be corrected; such for instance as the idea adopted by Generelli from Moro, and maintained in other parts of his work, that all the stratified rocks are derived from volcanic ejections. Nevertheless, geology, by the middle of the eighteenth century, had evidently begun to pass gradually, though very slowly, from the stage of crude and fanciful hypotheses to that of an inductive science. But even then the observers had only succeeded in setting foot on the lower slopes of a peak, the summit of which will not be reached, if indeed it ever be, for many a long year to come. During the next half of the century progress was made, now in this direction, now in that; slowly truths were established, slowly errors dispelled; and as the close of that century approached, the foundations of modern geology began to be securely laid. A great impulse was given to the work, though to some extent the apparent help proved to be a real hindrance, by that famous teacher, Werner of Freiberg, in Saxony. His influence was highly beneficial, because he insisted not only on a careful study of the mineral character of rocks, but also on attending to their grouping, geographical distribution, and general relations. It was hurtful almost to as great a degree, because he maintained, and succeeded by his enthusiasm and eloquence in impressing on his disciples, most erroneous notions as to the origin of basalts and those other igneous rocks which were formerly comprehended under the name "trap." Such rocks he stoutly asserted to be chemical precipitates from water, and, besides this, he held views in general strongly opposed to anything like the action of uniform causes in the earth's history. In short, the Saxon Professor was in many respects the exact antithesis of Lyell, and the points of essential contrast cannot be better indicated than in the words of the latter.[59]

"If it be true that delivery be the first, second, and third requisite in a popular orator, it is no less certain that to travel is of first, second, and third importance to those who desire to originate just and comprehensive views concerning the structure of our globe. Now Werner had not travelled to distant countries; he had merely explored a small portion of Germany, and conceived, and persuaded others to believe, that the whole surface of our planet and all the mountain-chains in the world were made after the model of his own province. It became a ruling object of ambition in the minds of his pupils to confirm the generalisations of their great master, and to discover in the most distant parts of the globe his 'universal formations,' which he supposed had been each in succession simultaneously precipitated over the whole earth from a common menstruum or chaotic fluid."

These wild generalisations, as Lyell points out, had not even the merit of being really in accordance with the evidence afforded by some parts of Saxony itself. Werner, in fact, was a conspicuous example of a tendency, which perhaps even now is not quite extinct, to work too much beneath a roof and too little in the open air; to found great generalisations on the minute results of research in a laboratory, without subjecting them to actual tests by the study of rocks in the field.

This error on Werner's part was the less excusable, because, even before he began to lecture, the true nature of basalts and traps generally had been recognised by several observers of different nationalities. In the Hebrides and in Iceland, in the Vicentin and in Auvergne, even in Hesse and in the Rheingau, proof after proof had been cited, and the evidence in favour of the "igneous" origin of these rocks had become irresistible, as one might suppose, within some half dozen years of Werner's appointment as professor at Freiberg. Faujas, in 1779, published a description of the volcanoes of the Vivarais and Velay, in which he showed how the streams of basalt had poured out from craters which still remain in a perfect state. Desmarest also pointed out that in Auvergne "first came the most recent volcanoes, which had their craters still entire and their streams of lava conforming to the level of the present river courses. He then showed that there were others of an intermediate epoch, whose craters were nearly effaced, and whose lavas were less intimately connected with the present valleys; and lastly, that there were volcanic rocks still more ancient without any discernible craters or scoriæ, and bearing the closest analogy to rocks in other parts of Europe, the igneous origin of which was denied by the school of Freiberg." Desmarest even constructed and published a geological map of Auvergne, of which Lyell speaks in terms of high commendation. "They alone who have carefully studied Auvergne, and traced the different lava streams from their craters to their termination—the various isolated basaltic cappings—the relation of some lavas to the present valleys—the absence of such relations in others—can appreciate the extraordinary fidelity of this elaborate work."[60]