But, keenly as he might be impressed with the poetic grandeur of the falls, he could not forget the scientific questions which were ever present to his mind. The gorge of Niagara offered a problem for solution which had for him a special fascination. Not only did it illustrate on a grand scale the potencies of water in rapid motion, but also it furnished data for estimating the period during which this agent had been at work. The gorge has been carved in a plateau of Silurian rock, which terminates, seven miles below the falls, in a precipitous escarpment overhanging Queenstown. There was a time when that gorge did not exist, when the river first took its course along the plateau on its way from Lake Erie, and plunged over the brink of the escarpment. The valley at first was nothing more than a shallow trench excavated in the drift which covers the surface of the country—such an one as may still be seen between Lake Erie and the falls—but the river, slowly and steadily, has cut its way back through the rocky plateau from the first site of the falls near Queenstown to their present position. The upper part of this plateau consists of a thick bed of hard limestone, but beneath this the deposits become softer; and the lowest bed is the most perishable. The water, as it plunges down, undermines the overlying rock. The gorge began at once to be developed, and it has ever since continued to retreat towards Lake Erie. Every year makes some slight change. This becomes more marked when old histories are consulted and old drawings compared with the present aspect of the scene. Father Hennepin's sketch, of which Lyell gives a copy,[96] rude and incorrect as it is, proves beyond all question that the changes in the neighbourhood of Table Rock have been very considerable, for it shows that on this side a third and much narrower cascade fell athwart the general course of the main mass of water. This cascade, by the time of Kalm's[97] visit in 1751, had ceased to be conspicuous, and had quite disappeared before the date of Lyell's visit. The Horseshoe Fall also at the present time is less worthy of the name than it was at that date, for its symmetry has been seriously marred by a deep notch which the northern stream has cut in the more central part of the curve.[98] Careful inquiry convinced Lyell that the slow recession of the falls was an indubitable fact, and that its rate, on an average, was about a foot a year. As the gorge is about seven miles long, this would fix its beginning about 35,000 years ago.[99]

From Niagara Falls they travelled, still in Mr. Hall's company, by Buffalo to Geneva, examining on the way some red, green, and bluish-grey marls, with beds of gypsum and occasional salt springs, which, though older than the coal measures of England, closely resembled in appearance the upper part of the New Red Sandstone of Britain. Finally, after crossing the outcrops of the Devonian system, they reached Pennsylvania, where Lyell obtained his first view of the coal measures of North America, and was no less interested than surprised to find how closely the whole series corresponded with that of Britain. He saw sandstones "such as are used for building in Newcastle or Edinburgh, dark shales often full of ferns 'spread out as in a herbarium,' beds and nodules of clay-ironstone, seams of bituminous coal, varying in thickness from a few inches to some yards, and, beside these, an underlying coarse grit, passing down into a conglomerate, which was very like the millstone grit of England. The underclays beneath the seam of coal were full of stems and rootlets of Stigmaria, and the sight of these confirmed him in the opinion that the coal was formed of the remains of plants which had grown upon the spot."[100] After examining the district, they returned to Albany, and went thence to New York and Philadelphia, picking up on the way as much geological information as was possible.

New Jersey afforded some highly interesting sections of rocks belonging to the Cretaceous system, for these, though in mineral character resembling the greensands on the eastern side of the Atlantic, contained fossils which corresponded more closely with those of the white chalk, some species being actually identical. This fact was another proof that, though there had been in past ages a general similarity in the fauna of any period, geographical provinces had existed no less than they do at the present time.

Lyell had examined, as mentioned above, the bituminous coals in the undisturbed region of Pennsylvania, the next step was to study the beds of anthracite, with the associated strata, in the folded and broken ridges of the Alleghany Mountains. In this part of his work he had the inestimable advantage of being guided by Professor H. O. Rogers, whose name is inseparably connected with the geology of that classic region. The Alleghanies or Appalachians consist of a series of Silurian, Devonian, and Carboniferous strata in orderly sequence, "folded" (to use Lyell's words) "as if they had been subjected to a great lateral pressure when in a soft and yielding state, large portions having afterwards been removed by denudation. The long uniform, parallel ridges, with intervening valleys like so many gigantic wrinkles and furrows, are in close connection with the geological structure," and the rocks are most disturbed on the south-eastern flank of the chain, where the folds sometimes bend over to the west; in other words, the greatest disturbances are on the side nearest to the fundamental gneiss and the basin of the Atlantic—facts which probably stand in the relation of effect and cause.

It was a surprise to Lyell, on reaching the anthracite district around Pottsville on the Schuylkill, to see "a flourishing manufacturing town with the tall chimneys of a hundred furnaces, burning night and day, yet quite free from smoke." Special contrivances, of course, are requisite to secure the combustion of anthracite, especially in household fireplaces, but he had no hesitation in declaring that he preferred the use of it, notwithstanding the stove-like heat produced, to that of the bituminous coal consumed in London, with the penalty of living in an atmosphere dark with smoke and foul with smuts.

The seams of anthracite in this district are sometimes worked in open-air excavations, but as the strata have been bent into a vertical position the beds above and below, when the anthracite has been quarried out, are left like the walls of a fissure, and thus can be examined with the greatest ease.

Here also the "roof" of the seam proved to be a dark shale full of the usual plant-remains, among which were some British species of ferns, and the "floor" was an "underclay" containing the stems and rootlets of Stigmaria. Lyell also observed that the beds of detrital materials—sandstones, shales, etc.—were less persistent than those of coal, and that the way in which the former became thicker towards the south-east indicated that this was the direction of the ancient land region from which they had been derived. The result of his examination satisfied him that the anthracite of the Appalachians was identical in age, generally speaking, with the bituminous coal which he had previously examined, and was merely a fragment of the great continuous coalfield of Pennsylvania, Virginia, and Ohio, which lies about forty miles away to the westward.

After returning to Philadelphia Mr. and Mrs. Lyell went, viâ New York, to Boston, where he had been engaged to deliver a course of twelve lectures on geology at the Lowell Institute. To the courses here admission was free, but the tickets were given under certain restrictions. For Lyell's lectures about 4,500 were issued, and the class, he states, usually consisted of more than 3,000 persons. It had therefore to be sub-divided and each lecture to be repeated. The audience was composed "of persons of both sexes, of every station in society, from the most affluent and eminent in the various learned professions to the humblest mechanics, all well-dressed, and observing the utmost decorum."

At the conclusion of the lectures the Lyells travelled southwards, so that he might take advantage of the more genial climate and continue his geological work in the open air. He first halted at Richmond in Virginia, and from that place visited the Tertiary deposits in the vicinity of the James River. The more interesting of these are of Miocene age, and he observed that the fossils of Maryland and Virginia resembled those of Touraine and the neighbourhood of Bordeaux more closely than those from the coralline Crag of Suffolk, especially in the presence of genera indicative of a warm climate.

From this place they travelled across the "pine barrens"—where their train was stopped for the night by the slippery condition of the rails—to Weldon in North Carolina. Here Lyell saw the Great Dismal Swamp, a morass which extends for about forty miles from the neighbourhood of this town to Norfolk in Virginia. Like the bogs of Ireland, this marshy plain, some five-and-twenty miles across, is rather higher at the middle than at the edges. Its surface "is carpeted with mosses, and densely covered with ferns and reeds, above which many evergreen shrubs and trees flourish, especially the white cedar (Cupressus thyoides), which stands firmly supported by its long tap-roots in the softest parts of the quagmire. Over the whole, the deciduous cypress (Taxodium distichum) is seen to tower with its spreading top, in full leaf, in the season when the sun's rays are hottest, and when, if not interrupted by a screen of foliage, they might soon cause the fallen leaves and dead plants of the preceding autumn to decompose, instead of adding their contributions to the peaty mass. On the surface of the whole morass lie innumerable trunks of large and tall trees, blown down by the winds, while thousands of others are buried at various depths in the black mire below. They remind the geologist of the prostrate position of large stems of Sigillaria and Lepidodendron, converted into coal in ancient Carboniferous rocks."[101]