Very early in 1854 he again left England, in company with Lady Lyell and Mr. and Mrs. Bunbury, to visit Madeira. Some three weeks were devoted to a careful study of the geology of that island,[119] partly with the view of determining whether it afforded any support to Von Buch's favourite notion that volcanic cones were mainly formed by upheaval. As might be anticipated, the evidence was distinctly unfavourable. The island was proved to be mainly composed of volcanic material, cones of basaltic scoria, and great flows of similar lava, which had been piled successively one on another in the open air to a depth of about 4,000 feet. This mass had been subsequently pierced by dykes, worn by storm and stream, and in one or two places deeply grooved by rivers. There were, indeed, some underlying beds of marine origin, which, in one part of the island, rose to a height of 1,200 feet above the sea, and thus indicated a certain amount of upheaval; but even this was not of the kind which Von Buch's hypothesis required, while the rest of the evidence, including that afforded by some tuffs containing fossil plants, proved that the major part of the island had been formed above water.

From Madeira they went on to Teneriffe, Palma, and the Grand Canary. Of this part of the journey few details are given, but the results were afterwards incorporated with one of his books.[120] To the Peak of Teneriffe the reference is comparatively brief. Of Palma the account is much fuller, for this island had been regarded by Von Buch, who visited it in 1825, as a type of his "craters of elevation"—an idea which was dispelled by Lyell's investigation. The Grand Canary, like Madeira, proved to be formed of masses of subaërial volcanic rock, perhaps even thicker than those in Madeira, which also rested upon some upraised marine deposits of Miocene age.

In the course of 1854 Sir Charles received from his own University the honorary degree of D.C.L. Much time was spent in working up the results of his last journey, some of which were communicated to the Geological Society.[121] In the spring of 1855 he went to the Continent, studying, among other matters, the drifts in the neighbourhood of Berlin. In the summer he visited Scotland, made the acquaintance of Hugh Miller, worked over Arthur's Seat, Blackford Hill, and "the coast of Fife from Kinghorn to Kirkcaldy." It would be hard to find a set of sections better adapted for the study of ancient volcanic rocks, both contemporaneous and intrusive, than this coast affords; and his experience in Madeira and the Canaries enabled him to regard "the Edinburgh and Fife rocks with very different eyes."

One or two of his published letters about this period have a special interest, for they show that his views on the origin of species were undergoing a gradual modification. Speaking of some strange variations in the flower of an orchideous plant,[122] he refers, half in jest, to "ugly facts, as Hooker, clinging (like me) to the orthodox faith, calls these and other abnormal vagaries"; and again, the following sentences do not come from a man who is firm in his belief[123]:—

"When Huxley, Hooker, and Wollaston were at Darwin's last week, they (all four of them) ran a tilt against species further, I believe, than they are deliberately prepared to go—Wollaston least unorthodox. I cannot easily see how they can go so far, and not embrace the whole Lamarckian doctrine. Huxley held forth last week about the oxlip, which he says is unknown on the Continent. If we had met with it in Madeira and nowhere else, or the cowslip, should we not have voted them true species? Darwin finds, among his fifteen varieties of the common pigeon, three good genera and about fifteen good species, according to the received mode of species and genus-making of the best ornithologists, and the bony skeleton varying with the rest! After all, did we not come from an ourang, seeing that man is of the Old World, and not from the American type of anthropomorphous mammalia?"

Sir Charles and Lady Lyell were again on the Continent in the summer of 1856, examining the drifts of Northern Germany, visiting Humboldt at Berlin, discussing geological questions, especially in regard to Carboniferous plants, at Breslau with Roemer and Goeppert; working over the Riesengebirge; then going on to Dresden, and passing through the Saxon Switzerland to Aussig. The coalfield north-west of the former city was not neglected, the great breccia beds of the Rothliegende were again examined, and account was taken of Ramsay's opinion that certain British Permian breccias were glacial in origin. Close attention was also bestowed upon the great masses of hard quartzose grit, through which the Elbe has carved its way—the Quader of Saxony; for this formation, "a grit wholly deficient in calcareous matter, corresponds to the more purely calcareous rock (Chalk) of Great Britain, and yet contains here and there the same shells." He did not neglect the Brown Coal[124] between Töplitz and Aussig, and, on reaching Prague, made the acquaintance of Barrande, who took him to see those older Palæozoic rocks among which the great palæontologist had been labouring for nearly a quarter of a century. Then the travellers proceeded to Vienna, and after that to the Styrian Alps, to visit various interesting sections in the Salzkammergut, such as the classic ground at Gosau and the Triassic limestones near Hallstadt, where the last survivors of the Palæozoic ages are entombed with the representatives of the period. His letters, like many others of earlier date, indicate that, notwithstanding the fascinations of geology, neither living molluscs, nor insects, nor plants had ceased to interest. They returned by way of Munich, Ulm, Zürich and Paris, reaching England about the end of October.

The summer of 1857 was devoted to another Continental tour, rather more restricted than the former, but by no means unimportant. They went leisurely through Belgium and up the Rhine into Switzerland, halting at different places either to study sections of special interest or to confer with eminent geologists. Part of a letter written at this time[125] gives a valuable insight into the intention of these journeys and the character of the author, who was now in his sixtieth year:—

"I hope to continue for years travelling, making original observations, and, above all, going to school to the younger, but not, for all that, young geologists, whom I meet everywhere, so far ahead of us old stagers that they are familiar with branches of the science, fast rising into importance, which were not thought of when I first began."

Switzerland, obviously, was visited on this occasion with a very definite purpose. De Charpentier, Escher von der Linth, and other local geologists, had been for some time asserting that the glaciers of the Alps, at no remote epoch in geological history, had attained to an enormous size, had buried the Swiss lowland and covered it with morainic deposits, and had even welled up high against the flanks of the Jura, where the huge blocks of protogine from the Mont Blanc range—such as Pierre à bot and its companion erratics, full 800 feet above the Lake of Neuchâtel—indicated one position of its terminal moraine. Formerly, in common with many other geologists, Sir Charles had supposed these blocks to have been transported from the Alpine peaks by ice-rafts on the sea, at a time when the whole region stood at a considerably lower level. But now, after examining the erratics, their regular and significant distribution, the other glacial débris, the ice-worn surfaces of rock beneath it, and ascertaining the distinctly terrestrial character of the deposits all about the mountains, he unreservedly admitted land-ice to be the only possible agent, and, in accepting this hypothesis, perceived clearly that he must not shrink from applying it to Scotland. Then he plunged into the mountains to examine and follow the track of the retreating ice-sheet up to the glaciers which are still at work among the higher peaks, passing up the valley of the Reuss, crossing the Furka Pass, and descending the Rhone valley to Visp, but turning aside to examine the earth pillars on the flank of the Eggishorn.[126] Another, and a larger group of these pillars—instances of the erosive action of rain-water on morainic material—was seen near Stalden, in the Visp-thal; but these had been damaged by the earthquake which two years before had severely shaken this part of the Alps. At Zermatt the characteristics of glaciers and the effects of ice were carefully studied among the grandest of Alpine scenery; then, on returning to the Rhone Valley, they crossed the Alps by the Simplon and went on to Turin. Here he took the opportunity of visiting the huge moraine near Ivrea, which rises from the lowland like a range of hills, and of investigating the erratics of the Superga, satisfying himself that they really belonged to the Miocene deposits of that hill, and were indicative of the existence of glaciers in the Alps of that epoch, which had been large enough to reach the sea-level, and to send off masses of ice laden with boulders. Then they went on to Genoa, and along the beautiful Riviera di Levante to Pisa; thence, after a short visit to Florence, proceeding direct from Leghorn to Naples. Here, he once more examined Vesuvius, and had the luck to see lava streams actually in motion—"some going fast, others going very slow"—a sight which "gave him many new ideas." A study also of the dykes of Somma convinced him that they afforded no support to De Beaumont's idea of a distension of the mass.[127]

From Naples he went to Sicily, in order to make a second examination of Etna, and then, after rejoining Lady Lyell, spent some time in the neighbourhood of Rome, visiting the old volcanic district of the Alban Hills, and making excursions, as they travelled northward, into the Apennines. They returned through France, reaching London towards the end of December.