The osculant position of the anisodactyle pachyderms (Hyracidæ), formerly classed as rodents, renders it desirable that their parasites should be briefly noticed in this place. Probably these animals, zoologically speaking, come nearest to the rhinoceroses, but Prof. Owen showed that, anatomically, they possessed marked affinities with the sloths. The klipdas or dasse (Hyrax capensis) is infested by a tapeworm, of which hitherto the proglottides only appear to have been seen (Tænia hyracis, Pallas). Under the name of Cœnurus serialis a larval cestode has been described by Gervais, the same parasite being called Arhynchotænia critica by Pagenstecher (“Zur Naturgeschichte der Cestoden,” in ‘Sieb. u. Köll. Zeitschrift’). A variety of nematodes have also been observed in the Cape hyrax. Of these, the so-called Physaloptera spirula is classed as doubtful by Molin and Diesing. Hemprich and Ehrenberg furnished brief descriptions of four other nematodes. Two of these worms were placed in the genus Oxyuris (O. pugio and O. flavellum), and the other two in the new genus Crossophorus, which they formed for their reception (C. collaris and C. tentaculatus). The whole of these nematoids were obtained either from the cæcum or large intestine.
An able article in the ‘Natural History Review’ for July 1865, attributed to Professor Huxley, expressed very clearly the popular notion as to the great danger of the flesh of swine considered as a source of human parasites. No doubt the filthy pachyderms in question (Suidæ) are much infested by helminths, some of which gain access to man, but swine are neither attacked by a greater variety of entozoa than other domesticated animals, nor are they so frequently a source of human tapeworms as cattle. In the article above quoted the following passage occurs:—“Of all animals, feral or domestic, the common pig is beyond all doubt the most fertile source of human entozoa; at least, of important parasites, Trichina spiralis and the tapeworm would, there is good reason to believe, cease to infest us, did not this favorite quadruped act the part of a communicating medium.” This paragraph was evidently written under the impression that “the tapeworm” most commonly found in man was derived from the hog. So far back as 1864 I showed that this was an entire mistake.
Fig. 66.—Head and neck of Cysticercus from the Red River hog. Magnified 60 diameters. Original.
Flukes are rare in swine; nevertheless, Fasciola hepatica and Distoma lanceolatum are occasionally present in the domestic hog, and the peccaries (Dicotyles) are infested by an Amphistome (A. giganteum). This large species, 3/4″ in length, formed the basis of an admirable account of the anatomy of this genus of worms which the learned Vienna helminthologist, Diesing, wrote before he was deprived of his eyesight. The merits of that respected systematist’s investigations have, I think, been much underrated, in consequence, no doubt, of the artificial character of his system of classification. For all that, his writings remain invaluable. Turning to the cestodes of swine, there is not, so far as I am aware, any evidence of the occurrence of sexually-mature tapeworms either in the hog or its allies; but the frequency of larval cestodes, known as measles (Cysticercus telæ cellulosæ), was well known to the early Jewish writers. In the first part of this work I devoted as much space as I could spare to the consideration of Cysticerci in general, and the pork-measle in particular; but an exhaustive knowledge of the subject in relation to hygiene can only be acquired by consulting the principal original memoirs (quoted in the Bibliographies Nos. [13] and [14]). In a Westphalian ham, part of which was sent to me for examination, I calculated that each pound of the flesh must have contained upwards of 600 Cysticerci. I was informed by the donor, Dr Prior, that in spite of the disgusting state of the meat much of it had been eaten by the well-to-do family who purchased the ham. Cysticerci occasionally occupy the brain of the pig in considerable numbers. Florman recorded a case of this kind where their presence gave rise to vertigo in all respects resembling the gid ordinarily produced by Cœnurus in the sheep. As regards the larger cestode larvæ, Cysticercus tenuicollis and Echinococcus veterinorum are of frequent occurrence. One not unfrequently encounters the former in the mesentery, whilst the liver of the hog is sometimes so crowded with hydatids that scarcely any of the glandular substance of the organ remains visible. It is surprising how little the infested bearers appear to be inconvenienced in such cases. In the winter of 1859, and in the autumn of 1860, I found large cystic entozoa in an African Wart-hog and in a Red River hog. These animals had died at the London Zoological Society’s Menagerie; and as the worms appeared to me at the time to be quite distinct from the ordinary slender-necked hydatid, they were named, respectively, Cysticercus phacochæri æthiopici and C. potamochæri penicillati. The solitary example from the wart-hog was found in a cyst near the colon; whilst of the five large bladder-worms obtained from the Red River hog, one infested the liver and the other four were lodged in the folds of the mesentery. The caudal vesicle of the worm from the wart-hog measured 31/2″ in diameter, the vesicle of the other bladder-worm being much longer. A reference to the original figures will show that these forms are distinct. Swine are largely infested by nematodes. The best-known form is Ascaris lumbricoides, which Dujardin regarded as distinct (A. suilla). The hitherto disputed identity of this worm with the human lumbricoid being no longer questionable, the importance of the entozoon in relation to lumbricoid endemics must at once be obvious; I have already, however, dwelt upon this subject when treating of the human parasites. In like manner, the subject of the flesh-worm disease, which is due to Trichina spiralis, cannot be discussed in this place, as I have fully entered upon it in connection with trichinosis in the human subject. What may be the nature of the small threadworms found by Leidy in the extensor muscles of the hog I cannot say, but Diesing inferred that they might represent a distinct species (Trichina affinis). As regards the allied genus Trichocephalus, the common species infesting swine (T. crenatus), appears to be rarely absent. It not only infests the common domestic and wild hog, but the peccaries and wart-hogs. These entozoa are probably harmless to their bearers. In reference to them Krabbe says:—“When the eggs are expelled with the excrement and pass into water, then the embryos, after several months’ furlough, and there undergoing further development, are transferred to the swine’s intestinal canal.” If I rightly understand the paragraph (‘Husdyrenes Indvoldsorme,’ p. 28), Krabbe states that the embryos are still within their egg-coverings when infection takes place. The maw-worm of the hog is known as Spiroptera strongylina. It was described and figured by Gurlt. The males measure 1/2″ and the females 3/4″ in length. Specimens of this worm were supposed to have been found by Natterer in Dicotyles albirostris; but it seems that the worms in question represent a distinct species, if not an altogether new genus. In the year 1864 Professor Simonds placed in my hands a very singular nematode, to which I gave the binomial term Simondsia paradoxa. Numerous examples of this worm were found by Prof. Simonds occupying cysts within the walls of the stomach of a hog which had died at the London Zoological Society’s Menagerie. In my introductory treatise I wrote of it as follows:—“The worm in question has been regarded by Mr Simonds as a species of Strongylus, but I am inclined to think that its affinities will place it nearer to the genus Spiroptera. At present I have only examined the female, which is characterised by the possession of a multitude of large tentacle-like appendages surrounding the neck. These processes, by their aspect, remind one of the so-called branchial projections on the back of Eolis, but in this worm I believe them to be special folds formed for the lodgment of unusually developed uterine organs. The female worm is about 3/4″ in length.”
In the interval that has elapsed I have been unable to supply further particulars, and unfortunately the original drawings of the worm have been lost. The habits of the parasite remind us of Spiroptera megastoma infesting the walls of the stomach of the horse. Not improbably this singular entozoon may turn out to be identical with Molin’s Spiroptera sexalata, and if so, it may correspond with Spiroptera strongylina. However, Diesing afterwards recognising, as I had done, the desirability of separating this last-named worm from the Spiropteræ proper, formed for it his new genus Physocephalus. He then called the worm Physocephalus sexalatus. If, as is probable, my Simondsia and Diesing’s Physocephalus are identical, the species found by Simonds ought to be recognised by the generic title which Diesing proposed. His genus was established about four years before I described my Simondsia. Diesing was evidently led up to the recognition of the generic distinction of the worm by Molin’s examination and description of the worm. As, in my original account of the worm found by Simonds, I spoke of numerous appendages to the neck, it is evident that further investigation is necessary to clear up the question of identity. According to Molin and Diesing the male Spiroptera sexalata measures rather beyond 1/4″ and the female beyond 1/2″ in length. Neither Diesing nor Molin speak of Natterer’s worms as being found encysted. In fact they were free. Molin simply remarks:—“Io ne esaminai in oltre 6 esemplari maschi e 77 femine raccolti in parte dal muco che revestiva le pareti dello stomaco, ed in parte dal pasto contenuto nello stesso organo di un Dicotyles albirostris femina ai 24 Aprile, 1826.” After all that has been said it may be that my Simondsia paradoxa and Diesing’s Physocephalus sexalata are quite distinct, and that like the large- and small-mouthed maw-worms of the horse (Spiroptera megastoma and S. microstoma) they play a corresponding rôle. Before very long I hope to set this question definitively at rest.
Passing to the strongyloid nematodes one of the most remarkable and important species is Stephanurus dentatus. In the ‘Annalen des Wiener Museums’ for 1839 (s. 232) this worm was first described by Diesing, who employed the generic title as expressive of the crown-like figure of the tail of the male worm. Diesing wrote as follows:—“At Barra do Rio Negro, on the 24th of March, 1834, Natterer discovered this peculiar genus of worms occurring singly or several together in capsules situated amongst the layers of fat in a Chinese race of Sus scrofa domestica. The males measure from ten to thirteen lines long, the females from fifteen to eighteen lines, the former being scarcely a line in breadth at the middle of the body, whilst the latter are almost a line and a half in thickness. The curved body thickens towards the tail, is transversely annulated, and viewed with a penetrating lens is seen to be furnished with integumentary pores. The oral aperture opens widely. It is almost circular, and is supplied with six teeth at the margin. Two of these standing opposed to one another are larger and stronger than the rest. The tail of the male, when spread out evenly, is surrounded by a coronet of five lancet-shaped flaps; the combined flaps being connected together from base to apex by means of a delicate transparent membrane. The single spiculum situated at the extreme end of the tail projects slightly forward and is surrounded by three skittle-shaped bodies. The tail of the female is curved upon itself, rounded off, and drawn out at the extreme end into a straight beak-shaped point; whilst to both sides of the stumpy caudal extremity of the body short vesicular prominences are attached. The female reproductive outlet occurs at the commencement of the second half of the body. Thus, judging by its external characters this genus is most closely allied to Strongylus.” In reproducing Diesing’s description I have here rendered the translation somewhat more freely than in my previous record of the discovery given in ‘Nature’ (1871). The original description is supplemented by a brief account of the internal anatomy of the worm.
So far as I am aware no subsequent notice of this entozoon appeared until the year 1858, when Dr J. C. White gave some account of a “find” made in the United States. This re-discovery was reported in the sixth volume of the ‘Proceedings of the Boston Natural History Society.’ Dr White says:—“The worms were found in the leaf-yard of an apparently healthy hog, in the adipose tissue near the kidney. They occupied a space of the same about the size of a man’s fist and had burrowed through the mass in every direction, forming canals three or four millimètres in diameter, which terminated in cysts. On cutting open these cavities, which did not communicate with each other, they were found filled with pus, and in each were two worms, male and female.” Dr White expresses his opinion that the worms gained access to the tissues “by boring through the circulatory system while in the embryonic condition.” I think that Dr White deserves great credit for his correct diagnosis of the species, and all the more so because he was evidently not acquainted with Diesing’s original memoir. He expressly speaks of the “scanty descriptions” hitherto given of the worm. As Dr White had accurately determined the species in the presence of an American Scientific Society, it is remarkable that neither Verrill nor Fletcher should have identified the worm.
On the 10th of January, 1871, I received a letter from Prof. W. B. Fletcher, of Indianapolis, Indiana, U.S.A., and in it he announced that he had “found a worm” infesting the hog. The parasite was so abundant in swine that he obtained it in “nine out of ten hogs” which he had examined. Dr Fletcher sent me specimens of the worm for description and identification, when I at once recognised them as examples of Diesing’s Stephanurus dentatus. As Dr Fletcher’s first communication to myself was undated I do not know precisely when he first encountered the worm, but it was in 1870. In that same year Prof. Verrill received specimens of the worm. He says that they were received from Dr J. C. White. Failing to identify the parasites as Stephanuri, Verrill (making no allusion to the ‘Proceedings of the Boston Society’) not unnaturally supposed he had to deal with an entozoon that was new to science. Accordingly he immediately described and figured the worm under the combined title of Sclerostoma pinguicola. If these data are correctly given, the re-discovery of the worm in America was due to Dr J. C. White; its identity with Stephanurus being subsequently acknowledged by Diesing, and afterwards, quite independently, by myself. I gather this partly from Diesing’s ‘Kleine helminthologische Mittheilungen’ (s. 281), published as a supplement to his ‘Revision der Nematoden’ (1860–61). Until quite recently Diesing’s recognition of the identity of White’s parasites with Stephanuri was unknown in America. My conclusions arose from an examination of the actual specimens, whereas Diesing was entirely guided by White’s description. In this connection, moreover, a still more interesting re-discovery remained to be recorded. The original announcement which I made in the ‘British Medical Journal’ for January 14th, 1871, was followed by another in the same periodical for September, 1871. As stated in my second letter and repeated in my notice of Krabbe’s memoir on “Parasites” (‘London Medical Record,’ April 2, 1873), the President of the London Microscopical Society (through Mr Slack, who was at that time the secretary) forwarded to me a box of microscopic slides received by the Society from Australia. The slides displayed parasites of various kinds. Having been requested to identify the parasites I had the good fortune to recognise amongst them characteristic examples of Stephanurus dentatus. Thus was first made known the fact that this singular genus was not confined in its geographical distribution to the two American continents, but that it extended to Australia. The order of the principal “finds” and descriptions may therefore be thus restated. Natterer discovered the worm in Brazil in 1834. Diesing described it in 1839. Dr J. C. White re-discovered and identified the worm in 1858. It was subsequently found by Dr N. Cressy and by Dr Fletcher. These three observers all encountered the parasite in the United States (1858–70). Prof. Verrill re-described the worm as new to science in September, 1870. Diesing confirmed White’s diagnosis in 1860. I identified the worm from Fletcher’s “find” in 1871. Dr Morris supposed he had discovered a new entozoon in Australia in July, 1871. The Australian worms were identified by me as examples of Stephanurus dentatus in October, 1871.
The importance of Stephanurus in relation to porcine epizoöty and the supply of animal food cannot be ignored. As remarked in my communication to ‘Nature,’ it must be quite obvious that so large a parasite, when present in the hog in any considerable numbers, would give rise to serious disease, even if it were not productive of fatal results to the bearer. In one of his numerous communications to myself, Prof. W. B. Fletcher writes as follows:—“It is my opinion that this parasite is the cause, in some way, of the hog cholera, which has created such sad havoc within the past ten years over the pork-producing parts of America. One farmer told me, a few days ago, that within a month his loss alone from this cause was over one hundred head; and sometimes, in one neighbourhood, in a few days’ time, thousands have perished, although this season is not a cholera year, as our farmers say. I advised one farmer to burn or bury the dead animals, but he informed me that he believed that fewer hogs die of the disease after eating the dead animals than those kept from them. Unfortunately, in this State there is no law guarding the spread of disease, neither is there any reward of reputation or gain for pursuing any investigation that would bring pork and beef packers into disrepute. I myself could not get a pig’s kidney or beef’s liver in our city market, because I made investigations in some Texas cattle (being cut up in our market), which damaged their sale a few years ago.” In a third letter Dr Fletcher tells me that greater facilities for examining the carcases of hogs had since been accorded him through the liberality of a Liverpool firm of pork-packers, who had already killed 75,000 hogs during the summer season, i.e. up to the date of the first week in July. In hot weather the slaughtering is conducted in ice-houses. Prof. Fletcher’s views receive confirmation from the statements made by Dr Morris, who speaks of the pigs as dying from some mysterious disease, and thinks that the worms may be the cause of the porcine mortality. Writing to the President of the London Microscopical Society from Sydney (July 12th, 1871), Dr Morris says:—“It is just possible that some pigs may survive the irritation such a swarm of young worms must set up; others, again, may die from peritonitis, hence the sudden deaths amongst the pigs.” I think Dr Morris’ view is perfectly correct, but whether it be so or not, it is (as observed by me in ‘Nature’) interesting to notice the remarkable correspondency of the conclusions arrived at by Drs Fletcher and Morris independently. It will probably not be difficult to ascertain hereafter whether or not the maladies respectively termed “hog cholera” and “mysterious disease” are one and the same disorder, but whatever happens in this respect, it is now quite clear that this parasite, hitherto little regarded, and for many years past persistently overlooked, is extraordinarily prevalent in the United States, and, perhaps, equally so in Australia; it being further evident that its presence in the flesh of swine is capable of producing both disease and death. The statement of the worthy American farmer that the swallowing of infested flesh by pigs does not necessarily involve the pig-eating hog in a bad attack of the so-called “cholera disease” requires to be further tested, and it also remains to be proven whether or not the Stephanurus be capable of passing through all its developmental changes from the egg to the adult form within the body of the bearer without having at some time or other gained access to the outer world. The comparatively large size of the ova, which I find to be about 1/105″, or more than four times the size of Trichina-eggs, is not without significance, but as yet we are entirely unacquainted with the larvæ of Stephanurus. If no intermediary bearers are necessary to its development, we ought not to have to wait long for a complete record of the life-history of Stephanurus dentatus. In conclusion, I will only further remark that since thousands of hogs are infested by this entozoon the subject is worth further investigation. I believe that Prof. Fletcher brought the matter under the notice of the United States National Swine Breeder’s Association, which met at Indianapolis in November, 1872, but with what success I have been unable to learn. The wealthy agricultural societies of Great Britain pay little or no regard to the subject of parasites, although thousands of valuable animals annually perish from the injurious action of entozoa.