Mr. William Chapman, in his ‘Preservation of Timber from Premature Decay,’ &c., gives several instances of the rapid decay of the ships of the Royal Navy, about the commencement of the present century. He mentions three ships of 74 guns each, decayed in five years; three of 74 guns each, decayed in seven years; and one of 100 guns, decayed in six years. Mr. Pering, also, in his ‘Brief Enquiry into the Causes of Premature Decay,’ &c., says that ships of war are useless in five or six years; and he estimates the average duration to be eight years, and that the cost of the hull alone of a three-decker was nearly 100,000l. Mr. Pering was formerly at the dockyard, Plymouth, and therefore a good authority, if he availed himself of the opportunities of studying the subject. He has stated that he has seen fungi growing so strong betwixt the timbers in a man-of-war, as to force a plank from the ship’s side half an inch.
No doubt a great deal of this decay was attributable to the use of unseasoned timber, and defective ventilation; but there is too much reason to believe that it was principally owing to the introduction of an inferior species of oak (Quercus sessiliflora) into the naval dockyards, where, we imagine, the distinction was not even suspected. The true old English oak (Quercus robur) affords a close-grained, firm, solid timber, rarely subject to rot; the other is more loose and sappy, very liable to rot, and not half so durable.
One cause of the decay of wood in ships is the use of wooden treenails. A treenail is a piece of cleft wood (made round), from 1 foot to 3 feet 6 inches in length and 1½ inch in diameter. As the treenails are also made to drive easy, they never fill the holes they are driven into; consequently, if ever it admits water at the outer end, which, from shrinking, it is liable to do, that water immediately gets into the middle of the plank, and thereby forms a natural vehicle for the conveyance of water. The treenail is also the second thing which decays in a ship, the first, generally, being the oakum. Should any part of the plank or timbers of a ship be in an incipient state of decay, and a treenail come in contact with it, the decay immediately increases, while every treenail shares the same fate, and the natural consequence is, the ship is soon left without a fastening. Treenails in a warm country are sure to shrink and admit water.
Mr. Fincham, formerly Principal Builder in Her Majesty’s dockyard, Chatham, considers that the destruction of timber by the decay commonly known as dry rot, cannot occur unless air, (?) moisture, and heat are all present, and that the entire exclusion of any of the three stays the mischief. By way of experiment, he bored a hole in one of the timbers of an old ship built of oak, whose wood was at the time perfectly sound; the admission of air, the third element, to the central part of the wood (the two others being to a certain degree present) caused the hole to be filled up in the course of twenty-four hours with mouldiness, which very speedily became so compact as to admit of being withdrawn like a stick.
The confinement of timber under most circumstances is attended with the worst consequences, yet a partial ventilation tends to fan the flame of decay.
The admission of air has long been considered the only means of destroying the fungus, but as it has frequently proved ineffectual, it must not be always taken as a certain remedy. If dry air be properly admitted, in a quantity adequate to absorb the moisture, it will necessarily exhaust and destroy the fungus; but care should be taken lest the air should be conveyed into other parts of the building, for, after disengaging itself from the fungus over which it has passed, it carries with it innumerable seeds of the disease, and destroys everything which offers a bar to its progress. Air, in passing through damps, will partake of their humidity; it therefore soon becomes inadequate to the task for which it is designed. Owing to this circumstance, air has been frequently admitted into the affected parts of a building without any ultimate success; too often, instead of injuring the fungus, it has considerably assisted its vegetation, and infected with the disease other parts of the building, which would otherwise probably have remained without injury. The timber, which is in a state of decomposition by an intestinal decay, is little affected by the application of air, as this cannot penetrate the surrounding spongeous rottenness which generally forms the exterior of such timber, and protects the action which the humid particles have acquired in the exterior: as the extent and progress of the disease is therefore necessarily concealed, it is difficult to ascertain correctly the effect produced by the admission of dry air. Under these circumstances of necessity and danger, it will require considerable skill to effect the purpose without increasing the disease, and, as each case has its own peculiar characteristics, it is necessary before one attempts to admit air as a remedy, to previously estimate the destructive consequences which may result from so doing, and ascertain whether it will be injurious or beneficial to the building. The joists of the houses built by our ancestors last almost for ever, because they are in contact with an air which is continually changing. Now, on the contrary, we foolishly enclose them between a ceiling of plaster (always very damp to begin with) and a floor; they frequently decay, and then cause the most serious disasters, of which it is impossible to be forewarned.
Damp, combined with warmth, is as a destroying agent, still more active than simple damp alone—the heat being understood as insufficient to carry off the moisture by evaporation; and the higher the temperature with a corresponding degree of moisture, the more rapid the decay. If the temperature to which wood is exposed, whilst any sap remains in it, is too elevated, the vegetable fluids ferment; the tenacity is diminished, and when the action is carried to its full extent, the wood quickly becomes affected by the dry rot. Exposure to the atmosphere in positions where rain can lodge in quantity, contact with the ground, and application in damp situations deprived of air, will render wood liable to the wet rot; and however well seasoned it may have been previously to being brought within the influence of any of these causes, it will infallibly suffer. Air should therefore have free access to the wood in every direction:
… “for without in the wall of the house he made narrowed rests round about, that the beams should not be fastened in the walls of the house.”—1 Kings vi. 6.