Of steeping generally, whether in cold or warm water, it must be particularly observed that it dissolves the substance of the wood, and necessarily renders it lighter; indeed, it is known that notwithstanding wood that is carefully submerged remains good for a very long period after the water has dissolved a certain soluble part, it is, when taken out and dried, liable to be brittle, and unfit for any other work but joinery.

SEASONING BY STEAMING AND BOILING, ETC.

For the purposes of joinery, steaming and boiling are very good methods, as the loss of elasticity and strength which they produce, and which are essential in carpentry, is compensated by the tendency to shrinkage being reduced; the durability also is said by some to be rather improved than otherwise, at least from steaming. If steaming be not carried on too quickly it will answer, but if it be pushed with too much vigour it is very apt to produce a permanent warping and distortion of the material. Oak of British growth may be seasoned by this process, as without this precaution it requires a long time to season. It has been ascertained, that of woods seasoned by these methods, those dried soonest that had been steamed; but the drying in either case should be somewhat gradual, and four hours are generally sufficient for the boiling or steaming process. The question of time will depend upon circumstances: some persons consider that one hour should be allowed for every inch in thickness. In some dockyards, salt water is used in the boilers, in others fresh, from considerations of convenience; and the fact is, plank boiled in salt water never gets rid of the salts that naturally enter the pores of the wood in boiling; and such being the case, the ship in which this plank is used is much more liable to the effects of damp than she would have been if the plank had been boiled in fresh water.

Boiling and steaming are likewise employed for softening woods, to facilitate the cutting as well as bending of them. Thus, in Taylor’s patent machines for making casks, the blocks intended for the staves are cut out of white Canada oak to the size of 30 inches by 5 inches and smaller. They are well steamed, and then sliced into pieces ½ inch or ⅝ inch thick, at the rate of 200 in each minute, by a process far more rapid and economical than sawing; the instrument being a revolving iron plate of 12 feet diameter, with two radial knives arranged somewhat like the irons of an ordinary plane or spokeshave.

How far steaming or boiling affects the durability of timber has not been satisfactorily ascertained; but it is said that the planks of a ship near the bows, which are bent by steaming, have never been observed to be affected with dry rot. With respect to boiling, Du Hamel’s opinion is not favourable as to its adding to the durability of timber; for when a piece of dry wood was immersed in boiling water, and afterwards dried in a stove, it not only lost the water it had imbibed, but also a part of its substance; and when the experiment was repeated with the same piece of wood, it lost more of its substance the second time than it did the first. Tredgold—no mean authority—considers that “boiled or steamed timber shrinks less, and stands better than that which is naturally seasoned.” Barlow is of opinion that “the seasoning goes on more rapidly after the piece is steamed than when boiled.”

At the close of the Crimean and Baltic campaigns the port of Cherbourg was almost completely cleared of staves sufficiently seasoned for making casks. The engineer at the head of the coopering department determined to boil in fresh water the newly-cut staves, and compare the time of their seasoning with that of other staves cut from the same forests, but not prepared; and the result was that after four or five months’ exposure to the atmosphere, the boiled staves were perfectly fit for working up, while to bring the others to the same point fifteen months were barely sufficient.

Steaming is understood to prevent dry rot. No doubt boiling and steaming partly remove the ferment spores, but may not destroy the vitality of those remaining. For, according to Milne-Edwards, on ‘Spontaneous Generation.’ he has seen tardigrades resist the prolonged action of a temperature of 248° Fahr., and has known them to survive a temperature of 284° Fahr. That low forms of vegetation are fully as tenacious of life cannot be doubted.

Boiling and steaming also coagulate the albumen at 140° Fahr. Although coagulated albumen is insoluble in water, the water solution is by this heating process sealed up in the wood, and the cohesion of the latter is said to be diminished.

The first essays in the art of drying wood artificially carry us back to a period now tolerably remote. Wollaston and Fourcroy both recommended the drying of wood in ovens. Newmann, a German chemist, suggested another method, which has since been adopted in a somewhat different form, i. e. steaming the wood. Newmann placed the wood to be dried in a large wooden chest, taking care to leave spaces between the pieces, and then turned on the steam from a boiler provided for the purpose. The condensed steam, charged with albuminous matter taken up from the wood, or rather from its surface, was run off from time to time, and the process of the operation was judged by the colour of the water. When the latter was clear and colourless the chest was opened, and the wood withdrawn for use without further preparation. The process would have been useful enough if superheated steam, which would have dried the wood by absorbing the moisture, could have been used, but the cost of the process would doubtless have been too high to permit of its practical application.