South America.—Santa Maria wood.

Philippine Islands.—Malacintud, barnabá, palma-brava.

Tasmania.—Blue gum.

West Indies.—Lignum vitæ.

Second. The chemical, viz. Kyan’s process of corrosive sublimate; Payne’s process of sulphate of iron and muriate of lime; pitching and tarring; Burnett’s process of chloride of zinc; and arsenic, or other mercurial preparations, have all failed, with the exception of Bethell’s process of oil of tar. The failure must proceed from one of two causes; either that the sea-water decomposes the poisonous ingredients contained in the wood, or that these poisonous compounds have no injurious effect on the worms; it appears, however, that both these causes have been in operation, principally the latter.

Without a series of the most minute experiments, it is impossible to form any general notion of the action of sea-water on timber. Common salt, chlorides of calcium and magnesium, sulphate of soda, iodides and bromides of the same metals, are known to exist in sea-water, and in great abundance in the torrid zone. What effect these different ingredients may have upon saturated timber it is difficult to say, but it is extremely probable that they do have an effect.

With regard to the different poisonous compounds having no injurious effect on the worms, it should be remembered that all cold-blooded animals are much more tenacious of life than those of a higher temperament, and in descending the scale of animal creation, the tenacity of life increases, and this principle is more developed. A frog, which though cold-blooded, is an animal of a much higher order than the teredo, will not only live in hydrogen gas, but also in a strong solution of hydrocyanic acid, while at the same time a single drop placed on the nose of a rat, or in the eye of a rabbit, would produce instant death. A somewhat similar occurrence is noticed in the ‘British and Foreign Medical Review,’ for July, 1841, showing the slow effects of prussic acid on the common snake and turtle.

It may therefore be inferred, that as it requires a large quantity of the most virulently poisoned matter to destroy animals of a much higher order than the teredo, it would take a still greater quantity to affect those animals as they exist in their own element.

The preserving property of soluble salts, such as corrosive sublimate, sulphate of copper, &c., was considered to be founded upon their power of coagulating the albumen, and the sap of wood, thereby rendering that sap less liable to decay; but that very quality of combining with the albumen, destroyed the activity of the poison of the salts. A given quantity of corrosive sublimate of mercury, which if administered to a dog would kill it, would, when mixed with the white of an egg, become coagulated, and if swallowed in that state would be perfectly harmless; so a piece of wood, saturated by those salts, could be eaten by a worm without injury.

A French naturalist, M. de Quatrefages,[21] in 1848, suggested that a weak solution of mercury (corrosive sublimate) thrown into the water will destroy the milt of the teredo, and consequently prevent fecundation of the eggs, thus exhausting the molluscs in the bud. He proposed that ships should be cleared of this terrible pest by being taken into a closed dock, into which a few handfuls of corrosive sublimate should be thrown and well mixed with the water. He considered that about 1 lb. of sublimate would be sufficient for 20,000 cubic metres (metre = 39·37 English inches) of water; but on account of the cost it would be advisable to use salts of lead or copper. This proposition of de Quatrefages reminds us of Chapman’s suggestion, in 1812, to get rid of dry rot in ships, viz. by sweeping out the hold, laying from two to four tons of copperas in her bottom, and as much fresh water let in upon it as would make a saturated solution to soak into the wood.