But though not directly capable of affording nutriment to plants, it must not, on that account, be supposed that humus is altogether devoid of importance, for it is constantly undergoing decomposition in the soil, and thus becomes a source of carbonic acid which can be absorbed, and, as we shall afterwards more particularly see, it exercises very important functions in bringing the other constituents of the soil into readily available forms of combination.

It has been already observed that carbon, hydrogen, nitrogen, and oxygen, cannot be absorbed by plants when uncombined, but only in the forms of water, carbonic acid, ammonia, and nitric acid. It is scarcely necessary to detail the grounds on which this conclusion has been arrived at in regard to carbon and hydrogen, for practically it is of little importance whether they can be absorbed or not, as the former is rarely, the latter never, found uncombined in nature. Neither can there be any doubt that water and carbonic acid are the only substances from which these elements can be obtained. Every-day experience convinces us that water is essential to vegetation; and Saussure, and other observers, have shown that plants will not grow if they are deprived of carbonic acid, and that they actually absorb that substance abundantly from the atmosphere. The evidence for the non-absorption of oxygen lies chiefly in the fact that plants obtain, in the form of water and carbonic acid, a larger quantity of that element than they require, and in place of absorbing, are constantly exhaling it. The form in which nitrogen may be absorbed has given rise to much difference of opinion. In the year 1779, Priestley commenced the examination of this subject, and drew from his experiments the conclusion, that plants absorb the nitrogen of the air. Saussure shortly afterwards examined the same subject, and having found, that when grown in a confined space of air, and watered with pure water, the nitrogen of the plants underwent no increase, he inferred that they derived their entire supplies of that element from ammonia, or the soluble nitrogenous constituents of the soil or manure. Boussingault has since re-examined this question, and by a most elaborate series of experiments, in which the utmost care was taken to avoid every source of fallacy, he was led to the conclusion, that when haricots, oats, lupins, and cresses were grown in calcined pumice-stone, mixed with the ash of plants, and supplied with air deprived of ammonia and nitric acid, their nitrogen underwent no increase. It has been objected to these experiments, that the plants being confined in a limited bulk of air, were placed in an unnatural condition, and Ville has recently repeated them with a current of air passing through the apparatus, and found a slight increase in the nitrogen, due, as he thinks, to direct absorption. It is much more probable, however, that it depends on small quantities of ammonia or nitric acid which had not been completely removed from the air by the means employed for that purpose, for nothing is more difficult than the complete abstraction of these substances, and as the gain of nitrogen was only 0·8 grains, while 60,000 gallons of air, and 13 of water, were employed in the experiment, which lasted for a considerable time, it is reasonable to suppose that a sufficient quantity may have remained to produce this trifling increase.

While these experiments show that plants maintain only a languid existence when grown in air deprived of ammonia and nitric acid, and hence, that the direct absorption of nitrogen, if it occur at all, must do so to a very small extent, the addition of a very minute quantity of the former substance immediately produces an active vegetation and rapid increase in size of the plants. Among the most striking proofs of this are the experiments of Wolff, made by growing barley and vetches in a soil calcined so as to destroy organic matters, and then mixed with small quantities of different compounds of ammonia. He found that when the produce from the calcined soil was represented by 100, that from the different ammoniacal salts was—

Barley.Vetches.
Muriate of Ammonia257·2176·4
Carbonate of Ammonia123·6173·8
Sulphate of Ammonia203·6125·2

These experiments not only prove that ammonia can be absorbed, but they also indirectly confirm the statement already made, that humus is not necessary; for in some instances the produce was higher than that obtained from the uncalcined soil with the same manures, although it contained four per cent of humus.

On such experiments Liebig rests his opinion that ammonia is the exclusive source of the nitrogen of plants, and although he has recently admitted that it may be replaced by nitric acid, it is obvious that he considers this a rare and exceptional occurrence. The evidence, however, for the absorption of nitric acid appears to rest on as good grounds as that of ammonia, for experience has shown that nitrate of soda acts powerfully as a manure, and its effect must be due to the nitric acid, and not to the soda, for the other compounds of that alkali have no such effect. Wolff has illustrated this point by a series of experiments on the sunflower, of which we shall quote one. He took two seeds of that plant, and sowed them on the 10th May, in a soil composed of calcined sand, mixed with a small quantity of the ash of plants, and added at intervals during the progress of the experiment, a quantity of nitrate of potash, amounting in all to 17·13 grains. The plants were watered with distilled water, containing carbonic acid in solution, and the pot in which they grew was protected from rain and dew by a glass cover. On the 19th August one of the plants had attained a height of above 28 inches, and had nine fine leaves and a flower-bud; the other was about 20 inches high, and had ten leaves. On the 22d August, one of the plants having been accidentally injured, the experiment was terminated. The plants, which contained 103·16 grains of dry matter, were then carefully analysed, and the quantity of nitrogen contained in the soil after the experiment and in the seed was determined.

Grains.
Nitrogenin the dry plants1·737}
"remaining in the soil0·697}2·434
"in the nitrate of potash2·370}
"in the seeds0·029}2·399
———
Difference0·035

Hence, the nitrogen contained in the plants must, in this instance, have been obtained entirely from the nitrate of potash, for the quantity contained in it and in the seeds is exactly equal to that in the plants and the soil, the difference of 0·03 grains being so small that it may be safely attributed to the errors inseparable from such experiments. For the sake of comparison, an exactly similar experiment was made on two seeds grown without nitrate of potash, and in this instance, after an equally long period of growth, the largest plant had only attained a height of 7·5 inches, and had three small pale and imperfectly developed leaves. They contained only 0·033 grains of nitrogen, while the seeds contained 0·032—indicating that, under these circumstances, there was no increase in the quantity of that element.

But, independently of these experimental results, it may be inferred from general considerations, that nitric acid must be one of the sources from which plants derive their nitrogen. It has been already stated, that the humus contained in the soil consists of the remains of decayed plants, and there is every reason to suppose that the primeval soil contained no organic matters, and that the first generation of plants must have derived the whole of their nitrogen from, the atmosphere. If, therefore, it be assumed that ammonia is the only source of the nitrogen of plants, it would follow, that as that substance cannot be produced by the direct union of its elements, the quantity of ammonia in the air could only remain undiminished in the event of the whole of the nitrogen of decaying plants returning into that form. But this is certainly not the case, for every time a vegetable substance is burned, part of its nitrogen is liberated in the free state, and in certain conditions of putrefaction, nitric acid is produced. Now, if ammonia be the only form in which nitrogen is absorbed, there must be a gradual diminution of the quantity contained in the air; and further, there must either be some continuous source of supply by which its quantity is maintained, or there must be some other substance capable of affording nitrogen in a form fitted for the maintenance of plant life. As regards the first alternative, it must be stated that we know of no source other than the decomposition of plants from which ammonia can be derived, and we are therefore compelled to adopt the second alternative, and to admit that there must be some other source of nitrogen, and it cannot be doubted, from what has been already stated, that it is from nitric acid only that it can be obtained.