The minerals just referred to, constitute the great bulk of the mountain masses, but they are associated with many others which take part in the formation of the soil. Of these the most important are the zeolites which do not occur in large masses but are disseminated through the other rocks in small quantity. They form a large class of minerals of which Thomsonite and natrolite may be selected as examples—

Thomsonite.Natrolite.
Silica38·7348·68
Alumina30·8426·36
Lime13·43
Potash0·540·23
Soda3·8516·00
Water13·099·55
————
100·48100·83

They are chiefly characterized by containing their silica in a soluble state, and hence may yield that substance to the plants in a condition particularly favourable for absorption.

It is obvious from what has been stated that all these minerals are capable, by their decomposition, of yielding soft porous masses having the physical properties of soils, but most of them would be devoid of many essential ingredients, while not one of them would yield either phosphoric acid, sulphuric acid, or chlorine. It has, however, been recently ascertained that certain of these minerals, or at least the rocks formed from them, contain minute, but distinctly appreciable traces of phosphoric acid, although in too small quantity to be detected by ordinary analysis; and small quantities of chlorine and sulphuric acid may also in most instances be found.

Still it will be observed that most of these minerals would yield a soil containing only two or three of those substances, which, as we have already learned, are essential to the plant. Thus, potash felspar, while it would give abundance of potash, would be but an inefficient source of lime and magnesia; and labradorite, which contains abundance of lime, is altogether deficient in magnesia and potash.

Nature has, however, provided against this difficulty, for she has so arranged it that these minerals rarely occur alone, the rocks which form our great mountain masses being composed of intimate mixtures of two or more of them, and that in such a manner that the deficiencies of the one compensate those of the other. We shall shortly mention the composition of these rocks.

Granite is a mixture of quartz, felspar, and mica in variable proportions, and the quality of the soil it yields depends on whether the variety of felspar present be orthoclase or albite. When the former is the constituent, granite yields soils of tolerable fertility, provided their climatic conditions be favourable; but it frequently occurs in high and exposed situations which are unfavourable to the growth of plants. Gneiss is a similar mixture, but characterised by the predominance of mica, and by its banded structure. Owing to the small quantity of felspar which it contains, and the abundance of the difficulty decomposable mica, the soils formed by its disintegration are generally inferior. Mica slate is also a mixture of quartz, felspar, and mica, but consisting almost entirely of the latter ingredient, and consequently presenting an extreme infertility. The position of the granite, gneiss, and mica slate soils in this country is such that very few of them are of much value; but in warm climates they not unfrequently produce abundant crops of grain. Syenite is a rock similar in composition to granite, but having the mica replaced by hornblende, which by its decomposition yields supplies of lime and magnesia more readily than they can be obtained from the less easily disintegrated mica. For this reason soils produced from the syenitic rocks are frequently possessed of considerable fertility.

The series of rocks of which greenstone and trap are types, and which are very widely distributed, differ greatly in composition from those already mentioned. They are divisible into two great classes, which have received the names of diorite and dolerite, the former a mixture of albite and hornblende, the latter of augite and labradorite, sometimes with considerable quantities of a sort of oligoclase containing both soda and lime, and of different kinds of zeolitic minerals. Generally speaking, the soils produced from diorite are superior to those from dolerite. The albite which the former contains undergoes a rapid decomposition, and yields abundance of soda along with some potash, which is seldom altogether wanting, while the hornblende supplies both lime and magnesia. Dolerite, when composed entirely of augite and labradorite, produces rather inferior soils; but when it contains oligoclase and zeolites, and comes under the head of basalt, its disintegration is the source of soils remarkable for their fertility; for these latter substances undergoing rapid decomposition furnish the plants with abundant supplies of alkalies and lime, while the more slowly decomposing hornblende affords the necessary quantity of magnesia. In addition to these, the basaltic rocks are found to contain appreciable quantities of phosphoric acid, so that they are in a condition to yield to the plant almost all its necessary constituents.

The different rocks now mentioned, with a few others of less general distribution, constitute the whole of our great mountain masses; and while their general composition is such as has been stated, they frequently contain disseminated through them quantities of other minerals which, though in trifling quantity, nevertheless add their quota of valuable constituents to the soils. Moreover, the exact composition of the minerals of which the great masses of rocks are composed is liable to some variety. Those which we have taken as illustrations have been selected as typical of the minerals; but it is not uncommon to find albite containing 2 or 3 per cent of potash, labradorite with a considerable proportion of soda, and zeolitic minerals containing several per cent of potash, the presence of which must of course considerably modify the properties of the soils produced from them. They are also greatly affected by the mechanical influences to which the rocks are exposed; and being situated for the most part in elevated positions, they are no sooner disintegrated than they are washed down by the rains. A granite, for instance, as the result of disintegration, has its felspar reduced to an impalpable powder, while its quartz and mica remain, the former entirely, the latter in great part, in the crystalline grains which existed originally in the granite. If such a disintegrated granite remains on the spot, it is easy to see what its composition must be; but if exposed to the action of running water, by which it is washed away from its original site, a process of separation takes place, the heavy grains of quartz are first deposited, then the lighter mica, and lastly the felspar. Thus there may be produced from the same granite, soils of very different nature and composition, from a pure and barren sand to a rich clay formed entirely of felspathic debris.

The sedimentary or stratified rocks are formed of particles carried down by water and deposited at the bottom of the primeval seas from which they have been upheaved in the course of geological changes. The process of their formation may be watched at the present day at the mouths of all great rivers, where a delta composed of the suspended matters carried down by the waters is slowly formed. The nature of these rocks must therefore depend entirely on that of the country through which the river flows. If its course runs through a country in which lime is abundant, calcareous rocks will be deposited, and if it passes through districts of different geological characters the deposit must necessarily consist of a mixture of the disintegrated particles of the different rocks the river has encountered. For this reason it is impossible to enter upon a detailed account of their composition. It is to be observed, however, that the particles of which they are composed, though originally derived from the crystalline rocks, have generally undergone a complex series of changes, geology teaching that, after deposition, they may in their turn undergo disintegration and be carried away by water, to be again deposited. Their composition must therefore vary not merely according to the nature of the rock from which they have been formed, but also according to the extent to which the decomposition has gone, and the successive changes to which they have been exposed. They may be reduced to the three great classes of clays, including the different kinds of clay slates, shales, etc., sandstone and limestone. It must be added also, that many of them contain carbonaceous matters produced by the decomposition of early races of plants and animals, and that mixtures of two or more of the different classes are frequent.