The year 1844 was also distinguished by the foundation of the Agricultural Chemistry Association of Scotland, an event of no small importance in the history of scientific agriculture. That association was instituted through the exertions of a small number of practical farmers, for the purpose of pursuing investigations in agricultural chemistry, and affording to its members assistance in all matters connected with the cultivation of the soil, and has formed the model of similar establishments in London, Dublin, and Belfast, as well as in Germany; and it is peculiarly creditable to the intelligence and energy of the practical farmers of Scotland, that with them commenced a movement, which has already found imitators in so many quarters, and conferred such great benefits on agriculture. Within the last ten or twelve years, and mainly owing to the establishment of agricultural laboratories, great progress has been made in accumulating facts on which to found an accurate knowledge of the principles of agricultural chemistry, and the number of chemists who have devoted themselves to this subject has considerably increased, though still greatly less than its exigencies require.
Notwithstanding all that has recently been done, it must not be forgotten that we have scarcely advanced beyond the threshold, and that it is only by numerous and frequently repeated experiments that it is possible to arrive at satisfactory results. Agricultural inquiries are liable to peculiar fallacies due to the perturbing influence of climate, season, and many other causes, the individual effects of which can only be eliminated with difficulty, and much error has been introduced, by hastily generalising from single experiments, in place of awaiting the results of repeated trials. Hence it is that the progress of scientific agriculture must necessarily be slow and gradual, and is not likely to be marked by any great or startling discoveries. Now that the relations of science to practice are better understood, the extravagant expectations at one time entertained have been abandoned, and, as a necessary consequence, the interest in agricultural chemistry has again increased, and the conviction daily gains ground that no one who wishes to farm with success, can afford to be without some knowledge of the scientific principles of his art.
CHAPTER I.
THE ORGANIC CONSTITUENTS OF PLANTS.
When the water naturally existing in plants is expelled by exposure to the air or a gentle heat, the residual dry matter is found to be composed of a considerable number of different substances, which have been divided into two great classes, called the organic and the inorganic, or mineral constituents of plants. The former are readily combustible, and on the application of heat, catch fire, and are entirely consumed, leaving the inorganic matters in the form of a white residuum or ash. All plants contain both classes of substances; and though their relative proportions vary within very wide limits, the former always greatly exceed the latter, which in many cases form only a very minute proportion of the whole weight of the plant. Owing to the great preponderance of the organic or combustible matters, it was at one time believed that the inorganic substances formed no part of the true structure of plants, and consisted only of a small portion of the mineral matters of the soil, which had been absorbed along with their organic food; but this opinion, which probably was never universally entertained, is now entirely abandoned, and it is no longer doubted that both classes of substances are equally essential to their existence.
Although they form so large a proportion of the plant, its organic constituents are composed of no more than four elements, viz.:—
Carbon.
Hydrogen.
Nitrogen.
Oxygen.
The inorganic constituents are much more numerous, not less than thirteen substances, which appear to be essential, having been observed. These are—