Reverting to the dynamical principle, that the product of every particle of matter in a fluid vortex, moving around a given axis, by its distance from the centre and angular velocity, must ever be a constant quantity, it follows that if the ethereal medium be uniformly dense, the periodic times of the parts of the vortex will be directly as the distances from the centre or axis; but the angular velocities being inversely as the times, the absolute velocities will be equal at all distances from the centre.
Newton, in examining the doctrine of the Cartesian vortices, supposes the case of a globe in motion, gradually communicating that motion to the surrounding fluid, and finds that the periodic times will be in the duplicate ratio of the distances from the centre of the globe. He and his successors have always assumed that it was impossible for the principle of gravity to be true, and a Cartesian plenum also; consequently, the question has not been fairly treated. It is true that Descartes sought to explain the motions of the planets, by the mechanical action of a fluid vortex solely; and to Newton belongs the glorious honor of determining, the existence of a centripetal force, competent to explain these motions mathematically, (but not physically,) and rashly rejected an intelligible principle for a miraculous virtue. If our theory be true, the visible creation depends on the existence of both working together in harmony, and that a physical medium is absolutely necessary to the existence of gravitation.
If space be filled with a fluid medium, analogy would teach us that it is in motion, and that there must be inequalities in the direction and velocity of that motion, and consequently there must be vortices. And if we ascend into the history of the past, we shall find ample testimony that the planetary matter now composing the members of the solar system, was once one vast nebulous cloud of atoms, partaking of the vorticose motion of the fluid involving them. Whether the gradual accumulation of these atoms round a central nucleus from the surrounding space, and thus having their tangential motion of translation converted into vorticose motion, first produced the vortex in the ether; or whether the vortex had previously existed, in consequence of conflicting currents in the ether, and the scattered atoms of space were drawn into the vortex by the polar current, thus forming a nucleus at the centre, as a necessary result of the eddy which would obtain there, is of little consequence. The ultimate result would be the same. A nucleus, once formed, would give rise to a central force, tending more and more to counteract the centripulsive power of the radial stream; and in consequence of this continually increasing central power, the heaviest atoms would be best enabled to withstand the radial stream, while the lighter atoms might be carried away to the outer boundaries of the vortex, to congregate at leisure, and, after the lapse of a thousand years, to again face the radial stream in a more condensed mass, and to force a passage to the very centre of the vortex, in an almost parabolic curve. That space is filled with isolated atoms or planetary dust, is rendered very probable by a fact discovered by Struve, that there is a gradual extinction in the light of the stars, amounting to a loss of 1 ⁄ 107 of the whole, in the distance which separates Sirius from the sun. According to Struve, this can be accounted for, “by admitting as very probable that space is filled with an ether, capable of intercepting in some degree the light.” Is it not as probable that this extinction is due to planetary dust, scattered through the pure ether, whose vibrations convey the light,—the material atoms of future worlds,—the debris of dilapidated comets? Does not the Scripture teach the same thing, in asserting that the heavens are not clean?
The theory of vortices has had many staunch supporters amongst those deeply versed in the science of the schools. The Bernoullis proposed several ingenious hypothesis, to free the Cartesian system from the objections urged against it, viz.: that the velocities of the planets, in accordance with the three great laws of Kepler, cannot be made to correspond with the motion of a fluid vortex; but they, and all others, gave the vantage ground to the defenders of the Newtonian philosophy, by seeking to refer the principle of gravitation to conditions dependent on the density and vorticose motion of the ether. When we admit that the ether is imponderable and yet material, and planetary matter subject to the law of gravitation, the objections urged against the theory of vortices become comparatively trivial, and we shall not stop to refute them, but proceed with the investigation, and consider that the ether is the original source of the planetary motions and arrangements.
On the supposition that the ether is uniformly dense, we have shown that the periodic times will be directly as the distances from the axis. If the density be inversely as the distances, the periodic times will be equal. If the density be inversely as the square roots of the distances, the times will be directly in the same ratio. The celebrated J. Bernoulli assumed this last ratio; but seeking the source of motion in the rotating central globe, he was led into a hypothesis at variance with analogy. The ellipticity of the orbit, according to this view, was caused by the planet oscillating about a mean position,—sinking first into the dense ether,—then, on account of superior buoyancy, rising into too light a medium. Even if no other objection could be urged to this view, the difficulty of explaining why the ether should be denser near the sun, would still remain. We might make other suppositions; for whatever ratio of the distances we assume for the density of the medium, the periodic times will be compounded of those distances and the assumed ratio. Seeing, therefore, that the periodic times of the planets observe the direct ses-plicate ratio of the distances, and that it is consonant to all analogy to suppose the contiguous parts of the vortex to have the same ratio, we find that the density of the ethereal medium in the solar vortex, is directly as the square roots of the distances from the axis.
Against this view, it may be urged that if the inertia of the medium is so small, as is supposed, and its elasticity so great, there can be no condensation by centrifugal force of rotation. It is true that when we say the ether is condensed by this force, we speak incorrectly. If in an infinite space of imponderable fluid a vortex is generated, the central parts are rarefied, and the exterior parts are unchanged. But in all finite vortices there must be a limit, outside of which the motion is null, or perhaps contrary. In this case there may be a cylindrical ring, where the medium will be somewhat denser than outside. Just as in water, every little vortex is surrounded by a circular wave, visible by reflection. As the density of the planet Neptune appears, from present indications, to be a little denser than Uranus, and Uranus is denser than Saturn, we may conceive that there is such a wave in the solar vortex, near which rides this last magnificent planet, whose ring would thus be an appropriate emblem of the peculiar position occupied by Saturn. This may be the case, although the probability is, that the density of Saturn is much greater than it appears, as we shall presently explain.
In order to show that there is nothing extravagant in the supposition of the density of the ether being directly as the square roots of the distances from the axis, we will take a fluid whose law of density is known, and calculate the effect of the centrifugal force, considered as a compressing power. Let us assume our atmosphere to be 47 miles high, and the compressing power of the earth’s gravity to be 289 times greater than the centrifugal force of the equator, and the periodic time of rotation necessary to give a centrifugal force at the equator equal to the gravitating force to be 83 minutes. Now, considering the gravitating force to be uniform, from the surface of the earth upwards, and knowing from observation that at 18,000 feet above the surface, the density of the air is only ½, it follows, (in accordance with the principle that the density is as the compressing force,) that at 43½ miles high, or 18,000 feet below the surface of the atmosphere, the density is only 1 ⁄ 8000 part of the density at the surface of the earth. Let us take this density as being near the limit of expansion, and conceive a hollow tube, reaching from the sun to the orbit of Neptune, and that this end of the tube is closed, and the end at the sun communicates with an inexhaustible reservoir of such an attenuated gas as composes the upper-layer of our atmosphere; and further, that the tube is infinitely strong to resist pressure, without offering resistance to the passage of the air within the tube; then we say, that, if the air within the tube be continually acted on by a force equal to the mean centrifugal force of the solar vortex, reckoning from the sun to the orbit of Neptune, the density of the air at that extremity of the tube, would be greater than the density of a fluid formed by the compression of the ocean into one single drop. For the centrifugal force of the vortex at 2,300,000 miles from the centre of the sun, is equal to gravity at the surface of the earth, and taking the mean centrifugal force of the whole vortex as one-millionth of this last force; so that at 3,500,000 miles from the surface of the sun, the density of the air in the tube (supposing it obstructed at that distance) would be double the density of the attenuated air in the reservoir. And the air at the extremity of the tube reaching to the orbit of Neptune, would be as much denser than the air we breathe, as a number expressed by 273 with 239 ciphers annexed, is greater than unity. This is on the supposition of infinite compressibility. Now, in the solar vortex there is no physical barrier to oppose the passage of the ether from the centre to the circumference, and the density of the ethereal ocean must be considered uniform, except in the interior of the stellar vortices, where it will be rarefied; and the rarefaction will depend on the centrifugal force and the length of the axis of the vortex. If this axis be very long, and the centrifugal velocity very great, the polar influx will not be sufficient, and the central parts will be rarefied. We see, therefore, no reason why the density of the ether may not be three times greater at Saturn than at the earth, or as the square roots of the distances directly.
BODES’ LAW OF PLANETARY DISTANCES.
Thus, in the solar vortex, there will be two polar currents meeting at the sun, and thence being deflected at right angles, in planes parallel to the central plane of the vortex, and strongest in that central plane. The velocity of expansion must, therefore, diminish from the divergence of the radii, as the distances increase; but in advancing along these planes, the ether of the vortex is continually getting more dense, which operate by absorption or condensation on the radial stream; so that the velocity is still more diminished, and this in the ratio of the square roots of the distances directly. By combining these two ratios, we find that the velocity of the radial stream will be in the ses-plicate ratio of the distances inversely. But the force of this stream is not as the velocity, but as the square of the velocity. The force of the radial stream is consequently as the cubes of the distances inversely, from the axis of the vortex, reckoned in the same plane. If the ether, however, loses in velocity by the increasing density of the medium, it becomes also more dense; therefore the true force of the radial stream will be as its density and the square of its velocity, or directly as the square roots of the distances, and inversely as the cubes of the distances, or as the 2.5 power of the distances inversely.
If we consider the central plane of the vortex as coincident with the plane of the ecliptic, and the planetary orbits, also, in the same plane; and had the force of the radial stream been inversely as the square of the distances, there could be no disturbance produced by the action of the radial stream. It would only counteract the gravitation of the central body by a certain amount, and would be exactly proportioned at all distances. As it is, there is an outstanding force as a disturbing force, which is in the inverse ratio of the square roots of the distances from the sun; and to this is, no doubt, owing, in part, the fact, that the planetary distances are arranged in the inverse order of their densities.