The prominent feature of the theory, therefore, is the necessity it will show for the existence of an all-pervading medium, and that it possesses inertia without ponderosity. That electricity is nothing more than the effects of the condensation and rarefaction of this medium by force. That it also pervades all atomic matter, whose motions necessarily move the medium; and, consequently, that there can be no motion without some degree of electricity. That no change can take place in bodies either by chemical decomposition, by increase or decrease of temperature, by friction or contact, without in some measure exciting electricity or motion of the ether. That galvanism and magnetism are but ethereal currents without condensation, induced by peculiar superficial and internal molecular arrangement of the particles of certain substances. That light and heat are effects of the vibrations of atoms, propagated through this universal medium from body to body. That the atomic motion of heat can be produced by the motion of translation or momentum of bodies in the gross, that is, by friction, by compression, &c.; and can be reconverted into momentum at our pleasure. Hence the latent heat or specific atomic motion of combustibles, originally derived from the sun, is transferred to atoms, which are capable of being inclosed in cylinders, so as to make use of their force of expansion, which is thus converted into momentum available for all the wants of man.
GRAVITY MECHANICAL.
When we come to a full examination of this theory, we shall further reason that this ether so far from being of that quasi spiritual nature which astronomers would have us believe, is a fearfully energetic fluid, possessing considerable inertia and elasticity; that its law of condensation is that of all other fluids, that is, as the compressing force directly; and that its effects are simply a product of matter and motion. We will next endeavor to prove that the gravity of planetary matter could not exist without this ethereal medium, by showing that it is an effect produced by the interference of opposing waves, whereby a body is prevented from radiating into space its own atomic motion, from the side opposite which another body is placed, as much as on the opposite side, and consequently it is propelled by its own motion towards the other body. And this effect following the simple law of inertia and radiation, is directly as the mass, and inversely as the squares of the distances.
GREAT PRINCIPLE OF DYNAMICS.
One great principle to be kept in view in this investigation, is that which teaches that the product of matter, angular velocity, and distance from the centre of motion, must ever be a constant quality in every balanced system. Yet this principle does not seem to be observed in the case of the planets. We will, however, endeavor to show that it is rigidly observed. And we will extend the principle further, and contend that all the phenomena of nature are consequences of the constant tendency of matter to conform to this principle of equilibrium, when suffering temporary derangement from the operation of other laws. That throughout the system of nature, equal spaces possess equal force. That what we call temperature, is nothing more than the motion of equilibrium or atomic momentum of space; or, in other words, that if all space were fluid, and in a state of equilibrium, the product of each atom of equal volume, by its motion would be a constant quality. From this it would seem to follow, that the specific heat of bodies should be inversely as their atomic weights; and this does, no doubt, approximately obtain as was proved by Dulong and Petit, for metallic substances, more recently by Regnault, and has since been extended by Garnier to other substances. But it is to the gaseous state that we must look for confirmation of the principle that equal spaces possess equal power; and in doing so, it will be necessary to bear in mind, that the ether also is affected by temperature.
SPECIFIC HEAT.
It has been contended by some that the medium which conveys the impression of light through transparent, bodies, is necessarily more dense within the body than without; but according to this theory the converse is true. A ray of light is a mechanical impulse, propagated through an elastic medium, and, like a wave in water, tends to the side of least resistance. Within a refracting body the ether is rarefied, not only by the proximity of the atoms of the body (or its density), but also by the motions of those atoms; so that if two simple gases of different specific gravity be made equal in density by compression, their refraction will be approximately as their specific heats. In the case of solids and liquids, or even compound gases, there is a continual absorption of motion to produce the cohesion of composition and aggregation. And the specific heats of compound gases will be found greater than those of simple gases, in proportion to the loss of volume by combination, ceteris paribus. If impenetrability be a law of matter, the more a portion of atomic matter is condensed, the less ether will be found in the same space. The same is also true when the natural density or specific gravity of a gas is greater than that of another. And the lighter the gas, the more will this circumstance vitiate the experiments to determine its specific heat. There is, therefore, this great source of fallacy in such experiments, viz.: that the ether permeates all fluids and solids, and that its specific heat probably far exceeds that of all other matter. This is a fundamental position of the theory, in support of which we will introduce a fact announced by M. V. Regnault, which was published in the Comptes Rendus of the French Academy for April, 1853. He says: “In the course of my researches I have encountered, indeed, at every step, anomalies which appeared to me inexplicable, in accordance with the theories formally recognized. For the sake of illustration I will quote one instance: 1st, a mass of gas, under a pressure of ten atmospheres, is contained in a space which is suddenly doubled; the pressure falls to five atmospheres. 2d. Two reservoirs of equal capacity are placed in a calorimeter; the one is filled with a gas, under a pressure of ten atmospheres; the second is perfectly empty. In these two experiments, the initial and final conditions of the gas are the same; but this identity of condition is accompanied by calorific results which are very different; for while in the former experiment there is a reduction of temperature, in the second the calorimeter does not indicate the slightest alteration of temperature.” This experiment tends to confirm the theory. In the first experiment, the sudden doubling of the space causes the ether also to expand, inasmuch as the sides of the vessel prevent the instantaneous passage of the external ether. In the second, both vessels are full, one of ether, and the other of air mixed with ether; so that there is no actual expansion of the space, and consequently no derangement of the quantity of motion in that space.
LAW OF SPECIFIC HEAT.
From this view it is evident that the specific heat of elastic fluids can only be considered as approximately determined. If equal spaces possess equal momenta, and the ethereal or tomic matter be inversely as the weight of the atomic matter in the same space, it follows that the product of the specific gravities and specific heats of the simple gases should be constant; or that the specific heats should be inversely as the specific gravities,—taking pound for pound in determining those specific heats. If we test the matter by the data now afforded, it is best to obey the injunction, “In medio tutissimus ibis.” In the following table, the first column are the values obtained by Regnault; in the second, the former values; and in the third, the mean of the two.
| Gases. | Reg. specific heats. | Former specific heats. | Mean. |
|---|---|---|---|
| Atmospheric air, | .237 | .267 | .252 |
| Oxygen, | .218 | .236 | .227 |
| Nitrogen, | .244 | .275 | .260 |
| Hydrogen, | 3.405 | 3.294 | 3.350 |