So long as wave-cut terraces are submerged, they do not appear on topographic maps of the land, though they appear on the charts of the coasts; but if a coastal tract with wave-cut terraces be elevated, or if the sea-level be drawn down, the terraces become land. Elevated sea-cliffs and wave-cut terraces are among the best evidences of change of relative level between water and land ([Fig. 311]).
Wave-erosion and horizontal configuration.—The structure of the rock along shore has as much to do with the horizontal configuration of the wave-shaped coast, as with its relief. In general, waves develop reëntrants in the less resistant portions of the shore, leaving the more resistant parts as headlands (San Pedro Point and Devil’s Slide, [Pl. XX], Coast of California). It is to be noted that the resistance of rock to wave-erosion is not determined by its hardness alone. Every division plane, whether due to bedding, to jointing, or to irregular fracture, is a source of weakness to the rock, and rock of great hardness may be so broken as to offer relatively little resistance. Inequalities of resistance, whatever their cause, give origin to inequalities of coastal configuration where wave-erosion is in progress. Given a coast of marked regularity and equal exposure, but composed of unequally resistant material, the waves will make it irregular by cutting most where the material is least resistant. A regular coast of uniform material, but unequal exposure, will be made irregular by the greater cutting at the points of greater exposure. A coast of marked irregularity and homogeneous material will be made more regular by the cutting off of the projecting points, because they are most exposed. With a given set of conditions, waves tend to develop a certain sort of shore-line which, so far as its horizontal form is concerned, is relatively stable. Such a shore-line may be said to be mature[163] so far as wave-erosion is concerned. Since coastal lands are, in general, both heterogeneous and unequally exposed, a mature coast-line is somewhat irregular. Its maturity is attained when the lesser exposure in the reëntrants developed in the less resistant parts, balances the superior exposure of the projections of the more resistant portions.
Since the conditions of erosion along coasts are constantly, even if slowly, changing, maturity is constantly being approached, but rarely reached. Other forces and processes, such as those of aggradation, vulcanism, and diastrophism, are in operation along coasts, and their results are sometimes antagonistic to those of the waves. The horizontal configuration of coasts is, therefore, the result of many coöperating forces, of which waves are but one. It is, nevertheless, important to note the goal to which the waves are working, even though they are continually defeated in their attempt to reach it. Their immediate goal is an equilibrium of erosion-rate and maturity of configuration; their final goal is the destruction of the land and the deposition of its substance in the sea, that is, in a position nearer the center of gravity of the earth.
Transportation by Waves.
The material eroded from the shore by the waves in the shaping of the cliff and terrace is carried away by the joint action of the waves, undertow, and shore-currents.
The in-coming wave begins to shift material where it begins to drag bottom, that is, a little outside the line of breakers. From the line where transportation begins, to the line of breakers, bottom detritus is shifted shoreward by the waves, while the undertow tends to carry it back again. Between the breakers and the shore there is also a tendency for the on-shore movement to carry débris to the water’s edge, and for the ebbing wave to carry it back again. The result of these opposed tendencies is to keep sediment in transit between the shore and the line of breakers. If the in-coming waves have a direction normal to the shore, the advance and recoil of the water move particles toward and from the shore, but effect no transfer along the shore; but the results which waves normal to the shore would achieve are always modified by other waves and by littoral currents.
If the in-coming wave is oblique to the shore, it shifts material in its own direction. The transfer by undertow, taken alone, would be sensibly normal to the shore, but the effect of the oblique waves is to slightly modify this direction. There is thus a slow transportation along shore, even in the absence of steady currents. A great amount of transportation would be effected in this way, though it would be carried on at a slow rate. Oblique waves also tend to develop a definite shore-current ([p. 342]) which affects both the amount and direction of the transportation. Any particle in suspension, or in motion on the bottom as the result of the wave or undertow, is shifted along shore by the littoral current, which affects the same water ([Fig. 300]). By the coöperation of wave- and shore-current, more and heavier material can be moved than by either alone, and the direction of movement is more nearly parallel to the shore than that of the wave. Similarly, by the coöperation of undertow and shore-current, more and heavier material can be moved than by either alone. The direction of movement is readily inferred from [Fig. 300]. The direction in which débris is shifted by wave- and shore-current is modified by the undertow, and the direction which would result from undertow and current is modified by the wave. It is often the waves of storms, rather than those of the prevailing winds, which determine the direction of greatest shore transportation.
The waves, the undertow, and the littoral currents work together in assorting the detritus of the shore. The coarsest parts may be beyond the power of all but the strongest waves. They accumulate where agitation is great. Less coarse parts are shifted farther from the site of greatest agitation, but no materials which are classed as coarse are carried beyond the depth of sensible movement. The coarse material which covers the bottom where the agitation of the water at the bottom is effective, constitutes shore drift.
Shore drift is not all derived from the shore by the cutting of the waves. A part of it is brought to the sea by streams and mingled with that eroded from the cliffs. The material which is fine enough to be held in suspension is measurably independent of depth. This is shown during storms when the water becomes turbid far beyond the line of breakers, and clears only after the waves have died away.
This sorting of shore drift, effected while it is in transportation, is often very perfect. The conditions favoring assortment are (1) vigorous wave-action, (2) prolonged transportation, and (3) a moderate volume of sediment.[164] The effect of these several conditions will be readily understood.