Fig. 367.—Schistose structure developed by pressure shown in the left half of the figure, while it is wanting in the right half. The vertical line is a bedding plane. The layer to the left was of sufficiently different composition or subject to sufficiently different movement to develop schistosity, while that to the right was broken (brecciated) instead. The rock at the left would be called quartz schist, while that at the right is quartzite. Huronian formation near Ableman, Wis. (Atwood.)
Metamorphism by heat.—When a mass of lava is poured out upon the surface, it bakes the mantle-rock which it overruns, in greater or less degree, depending on the mass and temperature. The nature of the effect is much the same as in the process of brick-making, a dehydration of the material, a hardening of the loose matter by the partial welding of the particles, and sometimes the partial fusion of the surface and the development of new compounds, usually glassy, but sometimes partially crystalline. In both the natural and the artificial process, the time element is short, the pressure trivial, and the water action limited. If the heat were to become sufficiently intense, the result would be fusion, i.e., a lava which would solidify into a glass. In such a case, the rock cycle would be carried back to the initial molten state and a new cycle instituted, but this does not usually take place when lava merely overflows the surface.
If lavas, instead of rising to the surface, wedge in between layers of rock and form sills, or interstratified sheets, the surface above as well as that below is baked, and as the excess of heat of the lava can only escape through the neighboring rock, the effects for a given mass of lava are more considerable, and as the time element and the water action (and sometimes the pressure) are usually greater than in the case of extruded lavas, the effects tend rather toward chemical and crystalline change than to simple baking. This tendency increases with increase in the mass of the lava and in its temperature. Sometimes enormous masses of very hot lava are thrust in between or among the strata that lie beneath the surface, and bring to bear upon them intense heat for a long period. So also, when a vent or fissure is the passageway for lavas that continue to come to the surface for long periods, as in the case of persistent volcanoes, the rocks which form the walls of the vent or fissure are heated for a long time, and this gives rise to metamorphism through heat, without very unusual pressure, but usually with the free aid of water. In these cases the chief effect is chemical recombination and crystallization. In the limestones and sandstones it is simple; in the shales more complex. In pure limestones and dolomites little chemical change takes place, but the molecules are rearranged into larger and more perfect crystals, and marble is the result. The coarseness of the crystals is, in a general way, a measure of the length of time during which the heat acts, and of its intensity, but much depends on the freedom of the attendant water circulation. Crystals an inch or two across are sometimes formed in the contact zone, where the attendant water action is important. If impurities, as silica, alumina, iron, etc., are present, various minerals, such as tremolite and actinolite, may be formed in the marble. In pure quartzose sandstones, the effect is to cause the building up of the quartz grains until the interspaces are essentially filled and the whole becomes a massive quartzite. Here, as in the marbles, impurities form adventitious crystals, a very common one being hematite, formed from the segregation of the ferric oxide of the sandstone.
In the shales, the material to be acted upon is more complex, for, while the main mass is an aluminum silicate, there is usually much free quartz, not a little potash and iron, and more or less of lime, magnesia, soda, and other ingredients, for the muds from which the shales arose contained not only the fully decomposed matter of the original crystalline rocks, but the fine matter worn from them by wind and water without decomposition. When this mixed matter is acted upon by high heat and moisture, it tends to return to its original crystalline state, so far as its changed constitution permits. The potash chiefly unites with alumina and silica, and forms potash feldspar (orthoclase chiefly) and potash mica (muscovite). The iron often unites with magnesia, alumina, and silica to form biotite or one of the ferromagnesian minerals, chiefly an amphibole. The lime usually aids in the formation of other silicates of either the feldspar or the ferromagnesian group, while the surplus silica crystallizes into quartz. There is usually a predisposition to form mica in preference to other silicates if the proper constituents are present, and the result is that mica schists and gneisses, in which mica abounds, are common products of the metamorphism of shales by contact with bodies of lava. Mica schists and micaceous gneisses are also formed in other ways, and other schists, dependent on the composition of the shales, are formed about intrusions of igneous rock. In all such cases pressure probably attends the heat and is a factor in the development of the schists. When the change induced by the heat is less considerable, the shale is baked, with incipient recrystallization, and often takes the form of argillite, a compact, massive sort of shale.
Beds of hydrous iron oxide (limonite) or of iron carbonate (siderite) are usually converted by heat into hematite or magnetite. Beds of peat, lignite, and bituminous coal are converted into anthracite by the driving off of the volatile hydrocarbons. If the process goes to the extreme, graphite is the result.
Metamorphism by heat and lateral pressure.—As already indicated, the more common intense pressures experienced by rocks at and near the surface are those that come from lateral thrusts arising from the shrinkage of the earth. These affect one dimension of the rock-mass, while they permit it to expand in one or both of the other dimensions. This produces a strain in all the constituent particles of the rock, and under such strain they pass more readily into solution than when free from strain, and more readily rearrange their molecules internally into positions of less strain. The crystals grow most freely along the planes of least stress, i.e., at right angles to the pressure.[202] As a consequence, where unidimensional pressure and high heat resulting from the compression unite their influence, the metamorphic changes are not only facilitated, but the rearrangement is controlled by the pressure and results in a parallel arrangement of the constituent crystals, giving a foliated or schistose character to the new rock. The changes themselves are much the same as those produced by heat and water without exceptional pressure, though some distinctions may be noted. It is to be observed, however, that two kinds of work are embraced here: the metamorphism of clastic rocks into crystalline schists, which may be regarded as an upbuilding process, anamorphism, and the mashing down of massive crystalline rocks into schists, which may be regarded as a degradational process, katamorphism. In both cases, however, there is solution and rearrangement of the molecules. The katamorphism of basalts and other basic rocks gives basic schists; that of granitic and similar rocks gives gneisses. The anamorphism of basic pyroclastic tuffs and wackes gives basic schists, while that of acid pyroclastics and most shales gives gneisses, mica schists, or similar acidic schists. It is obvious that ordinary shales cannot usually become basic schists, because in producing the original muds, the bases were generally removed; but when shales are highly calcareous and magnesian, as when they grade toward the limestones and dolomites, they may become basic schists by metamorphism, e.g., certain hornblendic schists. It is even more obvious that the limestone and sandstone formations must largely retain their distinct composition. It is thus seen that, in general, a sedimentary series anamorphosed must differ from a crystalline series katamorphosed, though both give rise to foliated or schistose rocks.
Deep-seated metamorphism.—When the exceptional pressure arises from the weight of rocks felt at great depth, it is practically equal in all directions and the crystallization probably develops normally and is not forced into the parallel or foliated form. Rocks metamorphosed under these conditions probably tend to take the massive form rather than the schistose form, but this conclusion is theoretical rather than observational, for little or nothing is known of the history of such rocks.
Completion of the rock cycle.—The crystallizing processes of metamorphism are fundamentally similar to the processes by which rocks crystallize out of magmas, only in the first case the work is done chiefly by the aid of an aqueous solution, while in the second it is done through a mutual solution of the constituents in themselves, where water was but an incident. If the heat factor in metamorphism be sufficiently increased, aqueous solution may actually grade into magmatic solution through various degrees of softening and melting, and the cycle of changes be closed in upon itself.