Fig. 188.—Longitudinal section of an incipient delta made of coarse material.
Rivers may be dammed in other ways, as by lava flows, by landslides, by glacial drift, etc. In all such cases, lakes may come into existence, but they are not due primarily to the activity of the river itself.
Deltas.[79]—Where a stream enters standing water, or a slower stream, a special form of plain, the delta, is sometimes built up (Figs. [169], [187], and [188]). Deltas and alluvial fans have much in common, and their only notable differences are those imposed by the differences in the conditions of deposition. The current of the stream is checked, but not altogether stopped, at its immediate debouchure. If it carries abundant sediment, much of it will be promptly dropped where the decrease in velocity is first felt. Such flow as there is beyond the debouchure is not confined to a definite channel, and the deposits made are therefore spread more or less on either side of the line which represents the continuation of the stream’s course.
As the depth of the water into which the stream flows increases, the current diminishes. Out to the point where the depth of the standing water is less than the depth of the current, the latter affects the bottom, and the surface of the deposits made slopes gently seaward; but where the depth of the standing water is such that the projected stream current is ineffective at the bottom, all the load rolled along the bottom is dropped, and a depositional slope is established ([Fig. 188]), its upper edge being below sea-level by an amount corresponding roughly to the depth of the current which brings the detritus. The outer slope is relatively steep and well-defined where the detritus is coarse, and relatively gentle and ill-defined where it is fine. Thus the stream tends to construct a sort of platform in the water just beyond its debouchure. The successive deposits on the outer abrupt slope will dip conformably with its surface ([Fig. 189]). The finest sediment will be carried beyond the steep slope, and conform to the topography of the bottom beyond (c, [Fig. 189]).
At the beginning, the top of the delta platform is at the level of the bottom of the stream’s channel at the point of debouchure, but it is gradually aggraded as water continues to flow over it. Its landward margin is presently built up to sea-level and then above it, and as the delta grows the delta-land is extended seaward (compare Figs. [188] and [189]). At the same time the channel of the stream above the original head of the delta is aggraded, for the current there is checked by the aggradation of the delta. Thus alluvial deposits continuous with the delta are extended landward.
Fig. 189.—Longitudinal section of the delta at a later stage of development.
The projection of the direction of the lower end of the stream may be said to be the axis of the extra-debouchure current. From this axis, where the flow is strongest, the movement diverges more or less to right and left. Since the velocity of the diverging water is reduced more rapidly than that of the water which follows the axis of flow, deposition is likely to take place faster on either side of the axis than along the axis itself. The result is that the extra-debouchure current tends to build up levee-like ridges on either side, making a sort of sluice-way for itself. This sluice-way is gradually extended seaward, and at the same time gradually filled. As its capacity is reduced, more and more of the water flows over its sides. Presently the escape of the water over the little side-levees will develop a break at some point, and a line of distinct flow then diverges from the main current. This distributary repeats the history of its main. Thus the processes of levee-building, channel-filling, and levee-breaking follow one another, until some such system of currents as shown in [Fig. 190] is developed. The result is that a delta’s growth is not simply in the line of extension of the main stream, but in a more or less semicircular area, the center of the circle being a point slightly below the position of the debouchure of the stream when the delta began. At any stage in its development the margin of the delta is more or less crenate ([Fig. 191]), or characterized by delta fingers ([Fig. 190]), the projections corresponding to the positions of the debouchures of the latest streams flowing across it. The extreme ends of the delta lobes ([Fig. 190]), and of groups of the delta fingers, often have something of the shape of the Greek letter from which the name originated, but the resemblance in form between a well-developed delta and the Greek letter is not striking. Deltas are sometimes built in bays, and in such cases their forms are predetermined on all sides but one. The head of a delta is sometimes arbitrarily located at the point where the first distributaries are given off. Since this point shifts widely with time, the definition can hardly be accepted. On this basis the head of the Mississippi delta is about 200 miles above its lower end. In reality it is much farther north.
Fig. 190.—The terminus of the delta of the Mississippi. (C. and G. Survey.)