Interlocking Apparatus for Operating Switches and Signals by Compressed Air, Pittsburg Yards, Pennsylvania Railroad.
(A model of the track is shown above the levers, on which the movements of the switches and signals are electrically indicated after they are completed.)
Torpedo Placer.
(The torpedo is carried forward by the plunger
and exploded by the depression of the hammer shown
near the rail.)
If the reader has grasped the full significance of interlocking, he understands that it makes it impossible to give a signal that would lead to a collision or to a derailment at a misplaced switch. The worst that a stupid, or drunken, or malicious signalman could do would be to delay traffic, if the signals were obeyed. Here comes in the failing case. The brake-power may be insufficient to stop a train after a danger signal is given. That is a rare occurrence, but may happen. The engineer may not see the danger signal because of fog, or he may carelessly run past it. Provision against a failure to see and to obey a signal may be made by placing on the track a torpedo, which will explode with a loud report when struck by a wheel. The use of hand-torpedoes in fogs, and for emergencies in places unprovided with fixed signals, is very common. These are little disks filled with a detonating powder, and provided with tin straps that are bent down to clasp over the top of the rail. A simple and very efficient torpedo machine, which has been used for some years on the Manhattan Elevated and elsewhere, is here shown. This machine has a magazine holding five torpedoes. It is connected to a signal-lever in such a way that, when the signal is put to danger, one torpedo is placed in a position to be exploded by the first passing wheel. When the signal returns to the clear position the torpedo, if unexploded, is withdrawn to the magazine. If the torpedo is exploded another one takes its place at the next movement of the signal-lever. One of these machines on the Elevated Road moves about five thousand times every day. In such a case a torpedo would soon be worn out if it was not exploded or frequently changed. When this apparatus is in operation, an unmistakable alarm is at once given to the engineer and to others if a danger signal is passed. On the Manhattan Elevated lines an engineman who overruns a danger signal and can show no good reason for it is suspended for the first offence, and discharged for the second. The torpedo makes it impossible for him to escape detection.
Old Signal Tower on the Philadelphia & Reading, at Phœnixville.
The second great class of signals comprises those which are intended to keep fixed intervals of space between trains running on the same track. These are block signals. The block system is used on a few of the railroads of the United States which have the heaviest and fastest traffic. Much the most common practice in this country, however, is to run trains by time intervals, and under the constant control of the train despatcher. In England the block system is almost universal. About ninety per cent. of all the passenger lines of that country are worked under the absolute block system.
When the block system is not used, it is quite common to protect particularly dangerous points, such as curves and deep cuts, by stationing watchmen there with flags or with some form of fixed signal. The watchman can notify an approaching engine-runner that a preceding train has or has not passed beyond his own range of vision; or can notify him that it has been gone a certain time. Travellers by the Philadelphia & Reading must have noticed the queer structures, with revolving vanes on top, looking like a feeble sort of windmill, which appear in positions to command a view of cuts, curves, etc. These are examples of the devices for local protection. The non-automatic block signal develops naturally from the protection of scattered points. Instead of placing watchmen at points of especial danger, they are placed at regular intervals of one mile, two miles, or five miles. Instead of the watchman looking to see that a train has disappeared from his field of vision before he lets another train pass, he uses the eyes of the next watchman ahead, who telegraphs back that the train has passed his station. Suppose A, B, and C to be three block-signal stations placed at intervals of two miles. When a train passes A, the operator at that point at once puts a signal to danger behind it. This signal stands at danger until the train passes B, and the operator puts his signal to danger, and telegraphs back to A to announce that train No. 1 has passed out of the block A B, and is protected by the signal at B. Then, and not until then, the operator clears the signal at A and allows train No. 2 to enter the block. Meanwhile train No. 1 is proceeding through the block B C, its rear protected at B; and the same sequence of events happens when it arrives at C as happened at B. This is the simplest form of block signalling. In the more elaborate form there are at each block-station three signals—the distant, the home, and the starting. The signals are often electrically interlocked, from one station to another, in such a way that it is mechanically impossible for the operator at A to give a signal for a train to pass that station until the signal at B has been put to danger behind the preceding train.