Fig. 46.—Old Car on the Quincy Granite Railroad.

One of the first problems which presented itself in the infancy of railroads was how to keep the cars on the rails.

Anyone who will stand close to a line of railroad when a train is rushing by at a speed of forty, fifty, or sixty miles an hour must wonder how the engine and cars are kept on the track; and even those familiar with the construction of railroad machinery often express astonishment that the flanges of the wheels, which are merely projecting ribs about 11/8 inches deep and 1¼ inches thick, are sufficient to resist the impetus and swaying of a locomotive or car at full speed. The problem of the manufacture of wheels which will resist this wear, and will not break, has occupied a great deal of the attention of railroad managers and manufacturers.

Fig. 47.Fig. 48.Fig. 49.
Janney Car Coupler, showing the Process of Coupling.

Locomotive driving-wheels in this country are always made of cast-iron, with steel tires which are heated and put on the wheels and then cooled. They are thus contracted and "shrunk" on the wheel. The tread, that is, the surface which bears on the rail, and the flange of the tire are then turned off in a lathe, shown in Figure 25, on [p. 121], made especially for the purpose. For engine-truck, tender, and car-wheels, until within a few years, "chilled" cast-iron wheels have been used almost exclusively on American railroads. If the tread and flange of a wheel were made of ordinary cast-iron they would soon be worn out in service, as such iron has ordinarily little capacity for resisting the wear to which wheels are subjected. Some cast-iron, however, has the singular property which causes it to assume a peculiar, hard crystalline form if, when it is melted, it is allowed to cool and solidify in contact with a cold iron mould. The iron which is thus cooled quickly, or "chilled," becomes very hard, and resists wear very much better than iron which is not chilled. Car-wheels which are made of this material are therefore cast in what is called a chill-mould. Figure 50 represents a section of such a mould and flask in which wheels are cast.

Fig. 50.—Mould and Flask in which Wheels are Cast.

A A is the wheel, which is moulded in sand in the usual way. The part B B of the mould, which forms the rim or tread of the wheel, consists of a heavy cast-iron ring. The melted iron is poured into this mould and comes in contact with B B. This has the effect of chilling the hot iron, as has been explained. In cooling, the wheel contracts; and for that reason the part between the rim C and the hub D is made of a curved form, as shown in the section, so that if one part should cool more rapidly than another these parts can yield sufficiently to permit contraction without straining any portion of the wheels injuriously. For the same reason the ribs on the back of the wheels, as shown in Figure 51, are also curved. As an additional safeguard to the unequal contraction in cooling, the wheels are taken out of the mould while they are red-hot, and placed in ovens where they are allowed to remain several days so as to cool very slowly.