If any number of inanimate bodies, possessed of different degrees of heat, be placed near each other, the heat will begin to pass from the hotter bodies to the colder, till there be an equilibrium of temperature. But this is by no means the case with respect to animated matter; for whatever be the degree of heat peculiar to individual animals, they preserve it, nearly unchanged, in every temperature, provided the temperature be not altogether incompatible with life or health. Thus, we find, from experiments that have been made, that the human body is not only capable of supporting, in certain circumstances, without any material change in its temperature, a degree of heat considerably above that at which water boils; but it likewise maintains its usual temperature, whilst the surrounding medium is several degrees below frost.

It is evident, therefore, that animals neither receive their heat from the bodies which surround them, nor suffer, from the influence of external circumstances, any material alterations in that heat which is peculiar to their nature. These general facts are confirmed and elucidated by many accurate and well authenticated observations, which show, that the degree of heat in the same genus and species of the more perfect animals, continues uniformly the same, whether they be surrounded by mountains of snow, in the neighbourhood of the pole, or exposed to a vertical sun, in the sultry regions of the torrid zone.

This stability and uniformity of animal heat, under such a disparity of external circumstances, and so vast a latitude in the temperature of the ambient air, prove, beyond doubt, that the living body is furnished with a peculiar mechanism, or power of generating, supporting, and regulating its own temperature; and that this is so wisely adapted to the circumstances of its economy, or so dependent upon them, that, whatever be the temperature of the atmosphere, it will have very little influence either in diminishing or increasing that of the animal.

In order that we may see how this effect is produced, we must examine the chemical properties of the air. Previously to this, however, it will be necessary to point out briefly how bodies are affected, with respect to heat, when they change their form.

When a body passes from a state of solidity to that of fluidity, it absorbs a quantity of heat, which becomes chemically combined with it, and insensible to the touch or the thermometer; in the same manner, when it passes from a fluid state to that of vapour or gas, it combines with a still larger quantity of heat, which remains latent in it, so long as it continues in the state of gas, but when it returns to the liquid or solid state, it gives out the heat which was combined with it, which, being set at liberty, flows into the surrounding bodies, and augments their temperature.

This is evinced by the conversion of ice into water, and of water into steam; and by the return of steam into water. It is evinced likewise by the evaporation of ether, and by numberless other experiments.

Modern chemistry has shown that the atmosphere is not a homogeneous fluid, but consists of two elastic fluids, endowed with opposite and different properties.

If a combustible body, for instance a candle, be confined in a given quantity of atmospheric air, it will burn only for a certain time; after it is extinguished, if another combustible body be lighted and immersed in the same air, it will not burn, but will immediately be extinguished.

It has been proved by chemical experiments, that in this instance, the combustible body absorbs that portion of the air which is fitted for combustion, but produces no change on that which is unfit: so that, according to this, the air of the atmosphere consists of two elastic fluids, one of which is capable of supporting combustion, and the other not; and that they exist in the proportion of one part of the former to three of the latter nearly.

These two parts may be separated from each other, and experiments made with them.