But approaching our question still more closely, let us, in illustration of the vital forces of the animal economy, choose three forms of its manifestation in which to seek for the evidences of correlation; these shall be heat, evolved within the body; muscular energy or motion; and lastly, nervous energy, or that form of force which, on the one hand, stimulates a muscle to contract, and on the other, appears in forms called mental.
The heat which is produced by the living body is obviously of the same nature as heat from any other source; it is recognized by the same tests, and may be applied for the same purposes. As to its origin, it is evident that since potential energy exists in the food which enters the body, and is there converted into force, a portion of it may become the actual energy of heat. And since, too, the heat produced in the body is precisely such as would be set free by the combustion of this food outside of it, it is fair to assume that it thus originates. To this may be added the chemical argument that while food capable of yielding heat by combustion is taken into the body, its constituents are completely or almost completely, oxidized before leaving it; and since oxidation always evolves heat, the heat of the body must have its origin in the oxidation of the food. Moreover, careful measurements have demonstrated that the amount of heat given off by the body of a man weighing 180 pounds is about 2,500,000 units. Accurate calculations have shown, on the other hand, that 288·4 grams of carbon and 12·56 grams of hydrogen are available in the daily food for the production of heat. If burned out of the body, these quantities of carbon and hydrogen would yield 2,765,134 heat units. Burned within it, as we have just seen, 2,500,000 units appear as heat; the rest in other forms of energy.[[21]] We conceive, however, that no long argument is necessary to prove that animal heat results from a conversion of energy within the body; or that the vital force heat, is as truly correlated to the other forces as when it has a purely physical origin.
The belief that the muscular force exerted by an animal is created by him is by no means confined to the very earliest ages of history. Traces of it appear to the careful observer even now, although, as Dr. Frankland says, science has proved that “an animal can no more generate an amount of force capable of moving a grain of sand than a stone can fall upward or a locomotive drive a train without fuel.”[[22]] In studying the characters of muscular action we notice, first, that, as in the case of heat, the force which it develops is in no wise different from motion in inorganic nature. In the early part of the lecture, motion produced by the contraction of muscle, was used to show the conversion of mass-force into molecular force. No one in this room believes, I presume, that the result would have been at all different, had the motion been supplied by a steam-engine or a water-wheel. Again, food, as we have seen, is of value for the potential energy it contains, which may become actual in the body. Liebig, in 1842, asserted that for the production of muscular force, the food must first be converted into muscular tissue,[[23]] a view until recently accepted by physiologists.[[24]] It has been conclusively shown, however, within a few years, that muscular force cannot come from the oxidation of its own substance, since the products of this metamorphosis are not increased in amount by muscular exertion.[[25]] Indeed, reasoning from the whole amount of such products excreted, the oxidation of the amount of muscle which they represent would furnish scarcely one-fifth of the mechanical force of the body. But while the products of tissue-oxidation do not increase with the increase of muscular exertion, the amount of carbonic gas exhaled by the lungs is increased in the exact ratio of the work done.[[26]] No doubt can be entertained, therefore, that the actual energy of the muscle is simply the converted potential energy of the carbon of the food. A muscle, therefore, like a steam-engine, is a machine for converting the potential energy of carbon into motion. But unlike a steam-engine, the muscle accomplishes this conversion directly, the energy not passing through the intermediate stage of heat. For this reason, the muscle is the most economical producer of mechanical force known. While no machine whatever can transform all of the energy into motion—the most economical steam-engines utilizing only one-twentieth of the heat—the muscle is able to convert one-fifth of the energy of the food into work.[[27]] The other four-fifths must, therefore, appear as heat. Whenever a muscle contracts, then, four times as much energy appears as heat as is converted into motion. Direct experiments by Heidenhain have confirmed this, by showing that an important rise of temperature attends muscular contraction;[[28]] a fact, however, apparent to any one who has ever taken active exercise. The work done by the animal body is of two sorts, internal and external. The former includes the action of the heart, of the respiratory muscles, and of those assisting the digestive process. The latter refers to the useful work the body may perform. Careful estimates place the entire work of the body at about 800 foot-tons daily; of which 450 foot-tons is internal, 350 foot-tons external work. And since the internal work ultimately appears as heat within the body, the actual loss of heat by the production of motion is the equivalent of the 350 foot-tons which represents external work. This by a simple calculation will be found to be 250,000 heat units, almost the precise amount by which the heat yielded by the food when burned without the body, exceeds that actually evolved by the organism. Moreover, while the total heat given off by the body is 2,500,000 units, the amount of energy evolved as work is equal to about 600,000 heat units; hence the amount of work done by a muscle is as above stated, one-fifth of the actual energy derivable from the food. One point further. The law of correlation requires that the heat set free when a muscle in contracting does work, shall be less than when it effects nothing; this fact, too, has been experimentally established by Heidenhain.[[29]] So, again, when muscular contraction does not result in motion, as when one tries to raise a weight too heavy for him, the energy which would have appeared as work, takes the form of heat: a result deducible by the law of correlation from the steam-engine.
The last of the so-called vital forces which we are to examine, is that produced by the nerves and nervous centers. In the nerve which stimulates a muscle to contract, this force is undeniably motion, since it is propagated along this nerve from one extremity to the other. In common language, too, this idea finds currency in the comparison of this force to electricity; the gray or cellular matter being the battery, the white or fibrous matter the conductors. That this force is not electricity, however, Du Bois-Reymond has demonstrated by showing that its velocity is only 97 feet in a second, a speed equaled by the greyhound and the race-horse.[[30]] In his opinion, the propagation of a nervous impulse is a sort of successive molecular polarization, like magnetism. But that this agent is a force, as analogous to electricity as is magnetism, is shown not only by the fact that the transmission of electricity along a nerve will cause the contraction of the muscle to which it leads, but also by the more important fact that the contraction of a muscle is excited by diminishing its normal electrical current;[[31]] a result which could take place only with a stimulus closely allied to electricity. Nerve-force, therefore, must be a transmuted potential energy.
What, now, shall we say of that highest manifestation of animal life, thought-power? Has the upper region called intelligence and reason, any relations to physical force? This realm has not escaped the searching investigation of modern science; and although in it investigations are vastly more difficult than in any of the regions thus far considered, yet some results of great value have been obtained, which may help us to a solution of our problem. It is to be observed at the outset that every external manifestation of thought-force is a muscular one, as a word spoken or written, a gesture, or an expression of the face; and hence this force must be intimately correlated with nerve-force. These manifestations, reaching the mind through the avenues of sense, awaken accordant trains of thought only when this muscular evidence is understood. A blank sheet of paper excites no emotion; even covered with Assyrian cuneiform characters, its alternations of black and white awaken no response in the ordinary brain. It is only when, by a frequent repetition of these impressions, the brain-cell has been educated, that these before meaningless characters awaken thought. Is thought, then, simply a cell action which may or may not result in muscular expression—an action which originates new combinations of truth only, precisely as a calculating machine evolves new combinations of figures? Whatever we define thought to be, this fact appears certain, that it is capable of external manifestation by conversion into the actual energy of motion, and only by this conversion. But here the question arises, Can it be manifested inwardly without such a transformation of energy? Or is the evolution of thought entirely independent of the matter of the brain? Experiments, ingenious and reliable, have answered this question. The importance of the results will, I trust, warrant me in examining the methods employed in these experiments somewhat in detail. Inasmuch as our methods for measuring minute amounts of electricity are very perfect, and the methods for the conversion of heat into electricity are equally delicate, it has been found that smaller differences of temperature may be recognized by converting the heat into electricity, than can be detected thermometrically. The apparatus, first used by Melloni in 1832,[[32]] is very simple, consisting first, of a pair of metallic bars like those described in the early part of the lecture, for effecting the conversion of the heat; and second, of a delicate galvanometer, for measuring the electricity produced. In the experiments in question one of the bars used was made of bismuth, the other of an alloy of antimony and zinc.[[33]] Preliminary trials having shown that any change of temperature within the skull was soonest manifested externally in that depression which exists just above the occipital protuberance, a pair of these little bars was fastened to the head at this point; and to neutralize the results of a general rise of temperature over the whole body, a second pair, reversed in direction, was attached to the leg or arm, so that if a like increase of heat came to both, the electricity developed by one would be neutralized by the other, and no effect be produced upon the needle unless only one was affected. By long practice it was ascertained that a state of mental torpor could be induced, lasting for hours, in which the needle remained stationary. But let a person knock on the door outside the room, or speak a single word, even though the experimenter remained absolutely passive, and the reception of the intelligence caused the needle to swing through 20 degrees.[[34]] In explanation of this production of heat, the analogy of the muscle at once suggests itself. No conversion of energy is complete; and as the heat of muscular action represents force which has escaped conversion into motion, so the heat evolved during the reception of an idea, is energy which has escaped conversion into thought, from precisely the same cause. Moreover, these experiments have shown that ideas which affect the emotions, produce most heat in their reception; “a few minutes’ recitation to one’s self of emotional poetry, producing more effect than several hours of deep thought.” Hence it is evident that the mechanism for the production of deep thought, accomplishes this conversion of energy far more perfectly than that which produces simply emotion. But we may take a step further in this same direction. A muscle, precisely as the law of correlation requires, develops less heat when doing work than when it contracts without doing it. Suppose, now, that beside the simple reception of an idea by the brain, the thought is expressed outwardly by some muscular sign. The conversion now takes two directions, and in addition to the production of thought, a portion of the energy appears as nerve and muscle-power; less, therefore, should appear as heat, according to our law of correlation. Dr. Lombard’s experiments have shown that the amount of heat developed by the recitation to one’s self of emotional poetry, was in every case less when that recitation was oral; i.e., had a muscular expression. These results are in accordance with the well-known fact that emotion often finds relief in physical demonstrations; thus diminishing the emotional energy by converting it into muscular. Nor do these facts rest upon physical evidence alone. Chemistry teaches that thought-force, like muscle-force, comes from the food; and demonstrates that the force evolved by the brain, like that produced by the muscle, comes not from the disintegration of its own tissue, but is the converted energy of burning carbon.[[35]] Can we longer doubt, then, that the brain, too, is a machine for the conversion of energy? Can we longer refuse to believe that even thought is, in some mysterious way, correlated to the other natural forces? and this, even in face of the fact that it has never yet been measured?[[36]]
I cannot close without saying a word concerning the part which our own country has had in the development of these great truths. Beginning with heat, we find that the material theory of caloric is indebted for its overthrow more to the distinguished Count Rumford than to any other one man. While superintending the boring of cannon at the Munich Arsenal towards the close of the last century, he was struck by the large amount of heat developed, and instituted a careful series of experiments to ascertain its origin. These experiments led him to the conclusion that “anything which any insulated body or system of bodies can continue to furnish without limitation, cannot possibly be a material substance.” But this man, to whom must be ascribed the discovery of the first great law of the correlation of energy, was an American. Born in Woburn, Mass., in 1753, he, under the name of Benjamin Thompson, taught school afterward at Concord, N. H., then called Rumford. Unjustly suspected of toryism during our Revolutionary war, he went abroad and distinguished himself in the service of several of the Governments of Europe. He did not forget his native land, though she had treated him so unfairly; when the honor of knighthood was tendered him, he chose as his title the name of the Yankee village where he had taught school, and was thenceforward known as Count Rumford. And at his death, by founding a professorship in Harvard College, and donating a prize-fund to the American Academy of Arts and Sciences at Boston, he showed his interest in her prosperity and advancement.[[37]] Nor has the field of vital forces been without earnest workers belonging to our own country. Professors John W. Draper[[38]] and Joseph Henry[[39]] were among its earliest explorers. And in 1851, Dr. J. H. Watters, now of St. Louis, published a theory of the origin of vital force, almost identical with that for which Dr. Carpenter, of London, has of late received so much credit. Indeed, there is some reason to believe that Dr. Watters’s essay may have suggested to the distinguished English physiologist the germs of his own theory.[[40]] A paper on this subject by Prof. Joseph Leconte, of Columbia, S. C., published in 1859, attracted much attention abroad.[[41]] The remarkable results already given on the relation of heat to mental work, which thus far are unique in science, we owe to Professor J. S. Lombard, of Harvard College;[[42]] the very combination of metals used in his apparatus being devised by our distinguished electrical engineer, Mr. Moses G. Farmer. Finally, researches conducted by Dr. T. R. Noyes in the Physiological Laboratory of Yale College, have confirmed the theory that muscular tissue does not wear during action, up to the point of fatigue;[[43]] and other researches by Dr. L. H. Wood have first established the same great truth for brain-tissue.[[44]] We need not be ashamed, then, of our part in this advance in science. Our workers are, indeed, but few; but both they and their results will live in the records of the world’s progress. More would there be now of them were such studies more fostered and encouraged. Self-denying, earnest men are ready to give themselves up to the solution of these problems, if only the means of a bare subsistence be allowed them. When wealth shall foster science, science will increase wealth—wealth pecuniary, it is true: but also wealth of knowledge, which is far better.
In looking back over the whole of this discussion, I trust that it is possible to see that the objects which we had in view at its commencement have been more or less fully attained. I would fain believe that we now see more clearly the beautiful harmonies of bounteous nature; that on her many-stringed instrument force answers to force, like the notes of a great symphony; disappearing now in potential energy, and anon reappearing as actual energy, in a multitude of forms. I would hope that this wonderful unity and mutual interaction of force in the dead forms of inorganic nature, appears to you identical in the living forms of animal and vegetable life, which make of our earth an Eden. That even that mysterious, and in many aspects awful, power of thought, by which man influences the present and future ages, is a part of this great ocean of energy. But here the great question rolls upon us, Is it only this? Is there not behind this material substance, a higher than molecular power in the thoughts which are immortalized in the poetry of a Milton or a Shakespeare, the art creations of a Michael Angelo or a Titian, the harmonies of a Mozart or a Beethoven? Is there really no immortal portion separable from this brain-tissue, though yet mysteriously united to it? In a word, does this curiously-fashioned body inclose a soul, God-given and to God returning? Here Science veils her face and bows in reverence before the Almighty. We have passed the boundaries by which physical science is enclosed. No crucible, no subtle magnetic needle can answer now our questions. No word but His who formed us, can break the awful silence. In presence of such a revelation Science is dumb, and faith comes in joyfully to accept that higher truth which can never be the object of physical demonstration.
Notes and References.
[1]. Humboldt, Views of Nature, Bohn’s ed., London, 1850, p. 380. This allegory did not appear in the first edition of the Views of Nature. In the preface to the second edition the author gives the following account of its origin: “Schiller,” he says, “in remembrance of his youthful medical studies, loved to converse with me, during my long stay at Jena, on physiological subjects.” * * * “It was at this period that I wrote the little allegory on Vital Force, called The Rhodian Genius. The predilection which Schiller entertained for this piece, which he admitted into his periodical, Die Horen, gave me courage to introduce it here.” It was published in Die Horen in 1795.